Best-Worst Method: Inconsistency, Uncertainty, Consensus, and Range Sensitivity Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.4233/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b
It is our choices that make us who we are. To lead a better life, we have to make better decisions. Nowadays, decisions are increasingly made in complex contexts, in a host of different application domains. Because of that, we need more reliable decision analysis methodologies to improve our decisions. The ability to deal with multi-dimensionality is one of the critical requirements of the decision analysis methods that help us make better decisions. Multi-Criteria Decision-Making (MCDM) is one of the most popular approaches when it comes to formulating and solving decision-making problems, best-known for its ability to handle problems where a multitude of, often conflicting, criteria arise. As one of the latest MCDM methods, the Best-Worst Method (BWM) has been studied substantially and applied increasingly to various fields since its introduction, thanks to its simplicity, flexibility and general applicability. Despite its popularity, some significant issues of BWM have not yet been systematically investigated in existing literature, including: (i) the inconsistency in the preferences provided by Decision-Makers (DMs), (ii) the uncertain information embedded in the DMs’ judgements, (iii) problems in reaching a consensus in group decision-making, and (iv) the range sensitivity in an MCDM problem that is not taken into account in BWM. The main objective of this thesis is to develop an approach to measure, check and improve inconsistency, to develop an approach to incorporate judgments uncertainty, to develop a method to reach consensus and to incorporate range sensitivity in the BWM.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://resolver.tudelft.nl/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b
- OA Status
- green
- Cited By
- 2
- OpenAlex ID
- https://openalex.org/W3217069501
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3217069501Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4233/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6bDigital Object Identifier
- Title
-
Best-Worst Method: Inconsistency, Uncertainty, Consensus, and Range SensitivityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-23Full publication date if available
- Authors
-
Faming LiangList of authors in order
- Landing page
-
https://resolver.tudelft.nl/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6bPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.4233/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6bDirect OA link when available
- Concepts
-
Sensitivity (control systems), Range (aeronautics), Computer science, Mathematics, Statistics, Engineering, Aerospace engineering, Electronic engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
Full payload
| id | https://openalex.org/W3217069501 |
|---|---|
| doi | https://doi.org/10.4233/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b |
| ids.doi | https://doi.org/10.4233/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b |
| ids.mag | 3217069501 |
| ids.openalex | https://openalex.org/W3217069501 |
| fwci | |
| type | article |
| title | Best-Worst Method: Inconsistency, Uncertainty, Consensus, and Range Sensitivity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10711 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.671999990940094 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Target Tracking and Data Fusion in Sensor Networks |
| topics[1].id | https://openalex.org/T11443 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.661899983882904 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Advanced Statistical Process Monitoring |
| topics[2].id | https://openalex.org/T11890 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.6568999886512756 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Scientific Measurement and Uncertainty Evaluation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C21200559 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6128478646278381 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[0].display_name | Sensitivity (control systems) |
| concepts[1].id | https://openalex.org/C204323151 |
| concepts[1].level | 2 |
| concepts[1].score | 0.49858927726745605 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[1].display_name | Range (aeronautics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4271965026855469 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.38675305247306824 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33637726306915283 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.11360853910446167 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C146978453 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[6].display_name | Aerospace engineering |
| concepts[7].id | https://openalex.org/C24326235 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[7].display_name | Electronic engineering |
| keywords[0].id | https://openalex.org/keywords/sensitivity |
| keywords[0].score | 0.6128478646278381 |
| keywords[0].display_name | Sensitivity (control systems) |
| keywords[1].id | https://openalex.org/keywords/range |
| keywords[1].score | 0.49858927726745605 |
| keywords[1].display_name | Range (aeronautics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4271965026855469 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.38675305247306824 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.33637726306915283 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.11360853910446167 |
| keywords[5].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:tudelft.nl:uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306400906 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Repository (Delft University of Technology) |
| locations[0].source.host_organization | https://openalex.org/I98358874 |
| locations[0].source.host_organization_name | Delft University of Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/I98358874 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | doctoral thesis |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://resolver.tudelft.nl/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b |
| locations[1].id | doi:10.4233/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400906 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Research Repository (Delft University of Technology) |
| locations[1].source.host_organization | https://openalex.org/I98358874 |
| locations[1].source.host_organization_name | Delft University of Technology |
| locations[1].source.host_organization_lineage | https://openalex.org/I98358874 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | thesis |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.4233/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b |
| locations[2].id | mag:3217069501 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://research.tudelft.nl/en/publications/best-worst-method-inconsistency-uncertainty-consensus-and-range-s |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5085287370 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1177-5501 |
| authorships[0].author.display_name | Faming Liang |
| authorships[0].affiliations[0].raw_affiliation_string | Transport and Logistics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | F. Liang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Transport and Logistics |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.4233/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Best-Worst Method: Inconsistency, Uncertainty, Consensus, and Range Sensitivity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10711 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.671999990940094 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Target Tracking and Data Fusion in Sensor Networks |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.4233/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400906 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Repository (Delft University of Technology) |
| best_oa_location.source.host_organization | https://openalex.org/I98358874 |
| best_oa_location.source.host_organization_name | Delft University of Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I98358874 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | thesis |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.4233/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b |
| primary_location.id | pmh:oai:tudelft.nl:uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306400906 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Repository (Delft University of Technology) |
| primary_location.source.host_organization | https://openalex.org/I98358874 |
| primary_location.source.host_organization_name | Delft University of Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/I98358874 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | doctoral thesis |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://resolver.tudelft.nl/uuid:0fd5201c-09cd-46e1-899c-47c0d9ad1f6b |
| publication_date | 2021-11-23 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 30, 100, 180, 229 |
| abstract_inverted_index.As | 107 |
| abstract_inverted_index.It | 0 |
| abstract_inverted_index.To | 10 |
| abstract_inverted_index.an | 191, 211, 221 |
| abstract_inverted_index.by | 164 |
| abstract_inverted_index.in | 26, 29, 153, 160, 172, 178, 182, 190, 200, 239 |
| abstract_inverted_index.is | 1, 56, 76, 195, 208 |
| abstract_inverted_index.it | 84 |
| abstract_inverted_index.of | 32, 37, 58, 62, 78, 109, 145, 205 |
| abstract_inverted_index.to | 17, 46, 52, 86, 96, 125, 132, 209, 213, 219, 223, 227, 231, 235 |
| abstract_inverted_index.us | 6, 69 |
| abstract_inverted_index.we | 8, 15, 39 |
| abstract_inverted_index.(i) | 157 |
| abstract_inverted_index.BWM | 146 |
| abstract_inverted_index.The | 50, 202 |
| abstract_inverted_index.and | 88, 122, 136, 185, 216, 234 |
| abstract_inverted_index.are | 23 |
| abstract_inverted_index.for | 93 |
| abstract_inverted_index.has | 118 |
| abstract_inverted_index.its | 94, 129, 133, 140 |
| abstract_inverted_index.not | 148, 196 |
| abstract_inverted_index.of, | 102 |
| abstract_inverted_index.one | 57, 77, 108 |
| abstract_inverted_index.our | 2, 48 |
| abstract_inverted_index.the | 59, 63, 79, 110, 114, 158, 161, 168, 173, 187, 240 |
| abstract_inverted_index.who | 7 |
| abstract_inverted_index.yet | 149 |
| abstract_inverted_index.(ii) | 167 |
| abstract_inverted_index.(iv) | 186 |
| abstract_inverted_index.BWM. | 201, 241 |
| abstract_inverted_index.MCDM | 112, 192 |
| abstract_inverted_index.are. | 9 |
| abstract_inverted_index.been | 119, 150 |
| abstract_inverted_index.deal | 53 |
| abstract_inverted_index.have | 16, 147 |
| abstract_inverted_index.help | 68 |
| abstract_inverted_index.host | 31 |
| abstract_inverted_index.into | 198 |
| abstract_inverted_index.lead | 11 |
| abstract_inverted_index.made | 25 |
| abstract_inverted_index.main | 203 |
| abstract_inverted_index.make | 5, 18, 70 |
| abstract_inverted_index.more | 41 |
| abstract_inverted_index.most | 80 |
| abstract_inverted_index.need | 40 |
| abstract_inverted_index.some | 142 |
| abstract_inverted_index.that | 4, 67, 194 |
| abstract_inverted_index.this | 206 |
| abstract_inverted_index.when | 83 |
| abstract_inverted_index.with | 54 |
| abstract_inverted_index.(BWM) | 117 |
| abstract_inverted_index.(iii) | 176 |
| abstract_inverted_index.check | 215 |
| abstract_inverted_index.comes | 85 |
| abstract_inverted_index.group | 183 |
| abstract_inverted_index.life, | 14 |
| abstract_inverted_index.often | 103 |
| abstract_inverted_index.range | 188, 237 |
| abstract_inverted_index.reach | 232 |
| abstract_inverted_index.since | 128 |
| abstract_inverted_index.taken | 197 |
| abstract_inverted_index.that, | 38 |
| abstract_inverted_index.where | 99 |
| abstract_inverted_index.(DMs), | 166 |
| abstract_inverted_index.(MCDM) | 75 |
| abstract_inverted_index.DMs’ | 174 |
| abstract_inverted_index.Method | 116 |
| abstract_inverted_index.arise. | 106 |
| abstract_inverted_index.better | 13, 19, 71 |
| abstract_inverted_index.fields | 127 |
| abstract_inverted_index.handle | 97 |
| abstract_inverted_index.issues | 144 |
| abstract_inverted_index.latest | 111 |
| abstract_inverted_index.method | 230 |
| abstract_inverted_index.thanks | 131 |
| abstract_inverted_index.thesis | 207 |
| abstract_inverted_index.Because | 36 |
| abstract_inverted_index.Despite | 139 |
| abstract_inverted_index.ability | 51, 95 |
| abstract_inverted_index.account | 199 |
| abstract_inverted_index.applied | 123 |
| abstract_inverted_index.choices | 3 |
| abstract_inverted_index.complex | 27 |
| abstract_inverted_index.develop | 210, 220, 228 |
| abstract_inverted_index.general | 137 |
| abstract_inverted_index.improve | 47, 217 |
| abstract_inverted_index.methods | 66 |
| abstract_inverted_index.popular | 81 |
| abstract_inverted_index.problem | 193 |
| abstract_inverted_index.solving | 89 |
| abstract_inverted_index.studied | 120 |
| abstract_inverted_index.various | 126 |
| abstract_inverted_index.analysis | 44, 65 |
| abstract_inverted_index.approach | 212, 222 |
| abstract_inverted_index.criteria | 105 |
| abstract_inverted_index.critical | 60 |
| abstract_inverted_index.decision | 43, 64 |
| abstract_inverted_index.domains. | 35 |
| abstract_inverted_index.embedded | 171 |
| abstract_inverted_index.existing | 154 |
| abstract_inverted_index.measure, | 214 |
| abstract_inverted_index.methods, | 113 |
| abstract_inverted_index.problems | 98, 177 |
| abstract_inverted_index.provided | 163 |
| abstract_inverted_index.reaching | 179 |
| abstract_inverted_index.reliable | 42 |
| abstract_inverted_index.Nowadays, | 21 |
| abstract_inverted_index.consensus | 181, 233 |
| abstract_inverted_index.contexts, | 28 |
| abstract_inverted_index.decisions | 22 |
| abstract_inverted_index.different | 33 |
| abstract_inverted_index.judgments | 225 |
| abstract_inverted_index.multitude | 101 |
| abstract_inverted_index.objective | 204 |
| abstract_inverted_index.problems, | 91 |
| abstract_inverted_index.uncertain | 169 |
| abstract_inverted_index.Best-Worst | 115 |
| abstract_inverted_index.approaches | 82 |
| abstract_inverted_index.best-known | 92 |
| abstract_inverted_index.decisions. | 20, 49, 72 |
| abstract_inverted_index.including: | 156 |
| abstract_inverted_index.application | 34 |
| abstract_inverted_index.flexibility | 135 |
| abstract_inverted_index.formulating | 87 |
| abstract_inverted_index.incorporate | 224, 236 |
| abstract_inverted_index.information | 170 |
| abstract_inverted_index.judgements, | 175 |
| abstract_inverted_index.literature, | 155 |
| abstract_inverted_index.popularity, | 141 |
| abstract_inverted_index.preferences | 162 |
| abstract_inverted_index.sensitivity | 189, 238 |
| abstract_inverted_index.significant | 143 |
| abstract_inverted_index.simplicity, | 134 |
| abstract_inverted_index.conflicting, | 104 |
| abstract_inverted_index.increasingly | 24, 124 |
| abstract_inverted_index.investigated | 152 |
| abstract_inverted_index.requirements | 61 |
| abstract_inverted_index.uncertainty, | 226 |
| abstract_inverted_index.inconsistency | 159 |
| abstract_inverted_index.introduction, | 130 |
| abstract_inverted_index.methodologies | 45 |
| abstract_inverted_index.substantially | 121 |
| abstract_inverted_index.Multi-Criteria | 73 |
| abstract_inverted_index.applicability. | 138 |
| abstract_inverted_index.inconsistency, | 218 |
| abstract_inverted_index.systematically | 151 |
| abstract_inverted_index.Decision-Makers | 165 |
| abstract_inverted_index.Decision-Making | 74 |
| abstract_inverted_index.decision-making | 90 |
| abstract_inverted_index.decision-making, | 184 |
| abstract_inverted_index.multi-dimensionality | 55 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5085287370 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |