Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized Model Responses Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3613905.3651093
Large language model (LLM) powered chatbots are primarily text-based today, and impose a large interactional cognitive load, especially for exploratory or sensemaking tasks such as planning a trip or learning about a new city. Because the interaction is textual, users have little scaffolding in the way of structure, informational "scent", or ability to specify high-level preferences or goals. We introduce ExploreLLM that allows users to structure thoughts, help explore different options, navigate through the choices and recommendations, and to more easily steer models to generate more personalized responses. We conduct a user study and show that users find it helpful to use ExploreLLM for exploratory or planning tasks, because it provides a useful schema-like structure to the task, and guides users in planning. The study also suggests that users can more easily personalize responses with high-level preferences with ExploreLLM.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3613905.3651093
- https://dl.acm.org/doi/pdf/10.1145/3613905.3651093
- OA Status
- gold
- Cited By
- 21
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396827243
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396827243Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3613905.3651093Digital Object Identifier
- Title
-
Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized Model ResponsesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-11Full publication date if available
- Authors
-
Xiao Ma, Swaroop Mishra, Ariel Liu, Sophie Ying Su, Jilin Chen, Chinmay Kulkarni, Heng-Tze Cheng, Quoc V. Le, Ed H.List of authors in order
- Landing page
-
https://doi.org/10.1145/3613905.3651093Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3613905.3651093Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3613905.3651093Direct OA link when available
- Concepts
-
Sensemaking, Computer science, Schema (genetic algorithms), Human–computer interaction, Exploratory research, Task (project management), Cognition, Cognitive load, Knowledge management, Psychology, Information retrieval, Management, Sociology, Neuroscience, Economics, AnthropologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
21Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 20, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396827243 |
|---|---|
| doi | https://doi.org/10.1145/3613905.3651093 |
| ids.doi | https://doi.org/10.1145/3613905.3651093 |
| ids.openalex | https://openalex.org/W4396827243 |
| fwci | 13.41434953 |
| type | article |
| title | Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized Model Responses |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 12 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12128 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in Service Interactions |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T11704 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1706 |
| topics[2].subfield.display_name | Computer Science Applications |
| topics[2].display_name | Mobile Crowdsensing and Crowdsourcing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780554381 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9007362127304077 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2063340 |
| concepts[0].display_name | Sensemaking |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7301425933837891 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C52146309 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6779772043228149 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7431116 |
| concepts[2].display_name | Schema (genetic algorithms) |
| concepts[3].id | https://openalex.org/C107457646 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5784618854522705 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[3].display_name | Human–computer interaction |
| concepts[4].id | https://openalex.org/C85973986 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5382146239280701 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1091731 |
| concepts[4].display_name | Exploratory research |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4652133285999298 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C169900460 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45306262373924255 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[6].display_name | Cognition |
| concepts[7].id | https://openalex.org/C61641136 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4222175180912018 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1107019 |
| concepts[7].display_name | Cognitive load |
| concepts[8].id | https://openalex.org/C56739046 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3674839437007904 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[8].display_name | Knowledge management |
| concepts[9].id | https://openalex.org/C15744967 |
| concepts[9].level | 0 |
| concepts[9].score | 0.23682066798210144 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[9].display_name | Psychology |
| concepts[10].id | https://openalex.org/C23123220 |
| concepts[10].level | 1 |
| concepts[10].score | 0.10017958283424377 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[10].display_name | Information retrieval |
| concepts[11].id | https://openalex.org/C187736073 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[11].display_name | Management |
| concepts[12].id | https://openalex.org/C144024400 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[12].display_name | Sociology |
| concepts[13].id | https://openalex.org/C169760540 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[13].display_name | Neuroscience |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C19165224 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[15].display_name | Anthropology |
| keywords[0].id | https://openalex.org/keywords/sensemaking |
| keywords[0].score | 0.9007362127304077 |
| keywords[0].display_name | Sensemaking |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7301425933837891 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/schema |
| keywords[2].score | 0.6779772043228149 |
| keywords[2].display_name | Schema (genetic algorithms) |
| keywords[3].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[3].score | 0.5784618854522705 |
| keywords[3].display_name | Human–computer interaction |
| keywords[4].id | https://openalex.org/keywords/exploratory-research |
| keywords[4].score | 0.5382146239280701 |
| keywords[4].display_name | Exploratory research |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.4652133285999298 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/cognition |
| keywords[6].score | 0.45306262373924255 |
| keywords[6].display_name | Cognition |
| keywords[7].id | https://openalex.org/keywords/cognitive-load |
| keywords[7].score | 0.4222175180912018 |
| keywords[7].display_name | Cognitive load |
| keywords[8].id | https://openalex.org/keywords/knowledge-management |
| keywords[8].score | 0.3674839437007904 |
| keywords[8].display_name | Knowledge management |
| keywords[9].id | https://openalex.org/keywords/psychology |
| keywords[9].score | 0.23682066798210144 |
| keywords[9].display_name | Psychology |
| keywords[10].id | https://openalex.org/keywords/information-retrieval |
| keywords[10].score | 0.10017958283424377 |
| keywords[10].display_name | Information retrieval |
| language | en |
| locations[0].id | doi:10.1145/3613905.3651093 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3613905.3651093 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Extended Abstracts of the CHI Conference on Human Factors in Computing Systems |
| locations[0].landing_page_url | https://doi.org/10.1145/3613905.3651093 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5087306425 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6134-3531 |
| authorships[0].author.display_name | Xiao Ma |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[0].affiliations[0].raw_affiliation_string | Google, United States |
| authorships[0].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[0].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Google (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiao Ma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Google, United States |
| authorships[1].author.id | https://openalex.org/A5063722751 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-6413-7001 |
| authorships[1].author.display_name | Swaroop Mishra |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[1].affiliations[0].raw_affiliation_string | Google Deepmind, United States |
| authorships[1].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[1].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Google (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Swaroop Mishra |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Google Deepmind, United States |
| authorships[2].author.id | https://openalex.org/A5088659313 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0513-7474 |
| authorships[2].author.display_name | Ariel Liu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[2].affiliations[0].raw_affiliation_string | Google, United States |
| authorships[2].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[2].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Google (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ariel Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Google, United States |
| authorships[3].author.id | https://openalex.org/A5021949589 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-4766-0591 |
| authorships[3].author.display_name | Sophie Ying Su |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[3].affiliations[0].raw_affiliation_string | Google, United States |
| authorships[3].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[3].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Google (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sophie Ying Su |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Google, United States |
| authorships[4].author.id | https://openalex.org/A5033428202 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3359-0938 |
| authorships[4].author.display_name | Jilin Chen |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[4].affiliations[0].raw_affiliation_string | Google, United States |
| authorships[4].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[4].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Google (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jilin Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Google, United States |
| authorships[5].author.id | https://openalex.org/A5078443228 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4922-6601 |
| authorships[5].author.display_name | Chinmay Kulkarni |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[5].affiliations[0].raw_affiliation_string | Google, United States |
| authorships[5].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[5].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Google (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chinmay Kulkarni |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Google, United States |
| authorships[6].author.id | https://openalex.org/A5054880622 |
| authorships[6].author.orcid | https://orcid.org/0009-0007-3845-8796 |
| authorships[6].author.display_name | Heng-Tze Cheng |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[6].affiliations[0].raw_affiliation_string | Google Deepmind, United States |
| authorships[6].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[6].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Google (United States) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Heng-Tze Cheng |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Google Deepmind, United States |
| authorships[7].author.id | https://openalex.org/A5088551093 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1087-2844 |
| authorships[7].author.display_name | Quoc V. Le |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[7].affiliations[0].raw_affiliation_string | Google Deepmind, United States |
| authorships[7].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[7].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Google (United States) |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Quoc Le |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Google Deepmind, United States |
| authorships[8].author.id | https://openalex.org/A5028125399 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-3230-5338 |
| authorships[8].author.display_name | Ed H. |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[8].affiliations[0].raw_affiliation_string | Google Deepmind, United States |
| authorships[8].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[8].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[8].institutions[0].type | company |
| authorships[8].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Google (United States) |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Ed Chi |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Google Deepmind, United States |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3613905.3651093 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized Model Responses |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12128 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in Service Interactions |
| related_works | https://openalex.org/W3002559787, https://openalex.org/W2100609754, https://openalex.org/W2050640900, https://openalex.org/W2049050102, https://openalex.org/W2596767525, https://openalex.org/W1886987011, https://openalex.org/W2901050779, https://openalex.org/W2147095771, https://openalex.org/W2363516506, https://openalex.org/W1991017375 |
| cited_by_count | 21 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 20 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3613905.3651093 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3613905.3651093 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Extended Abstracts of the CHI Conference on Human Factors in Computing Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3613905.3651093 |
| primary_location.id | doi:10.1145/3613905.3651093 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3613905.3651093 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Extended Abstracts of the CHI Conference on Human Factors in Computing Systems |
| primary_location.landing_page_url | https://doi.org/10.1145/3613905.3651093 |
| publication_date | 2024-05-11 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6778883912, https://openalex.org/W4381104137, https://openalex.org/W2584805976, https://openalex.org/W1989630473, https://openalex.org/W2159513729, https://openalex.org/W2978398555, https://openalex.org/W2016540947, https://openalex.org/W2060528272, https://openalex.org/W2141385588, https://openalex.org/W3031080112, https://openalex.org/W1530140198, https://openalex.org/W4385572906, https://openalex.org/W3198963017, https://openalex.org/W3196731672, https://openalex.org/W3215529831, https://openalex.org/W4226278401, https://openalex.org/W4385572980, https://openalex.org/W2102637141, https://openalex.org/W4221143046, https://openalex.org/W4366548330, https://openalex.org/W2940214511 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 12, 26, 31, 90, 111 |
| abstract_inverted_index.We | 58, 88 |
| abstract_inverted_index.as | 24 |
| abstract_inverted_index.in | 43, 121 |
| abstract_inverted_index.is | 37 |
| abstract_inverted_index.it | 98, 109 |
| abstract_inverted_index.of | 46 |
| abstract_inverted_index.or | 20, 28, 50, 56, 105 |
| abstract_inverted_index.to | 52, 64, 78, 83, 100, 115 |
| abstract_inverted_index.The | 123 |
| abstract_inverted_index.and | 10, 75, 77, 93, 118 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.can | 129 |
| abstract_inverted_index.for | 18, 103 |
| abstract_inverted_index.new | 32 |
| abstract_inverted_index.the | 35, 44, 73, 116 |
| abstract_inverted_index.use | 101 |
| abstract_inverted_index.way | 45 |
| abstract_inverted_index.also | 125 |
| abstract_inverted_index.find | 97 |
| abstract_inverted_index.have | 40 |
| abstract_inverted_index.help | 67 |
| abstract_inverted_index.more | 79, 85, 130 |
| abstract_inverted_index.show | 94 |
| abstract_inverted_index.such | 23 |
| abstract_inverted_index.that | 61, 95, 127 |
| abstract_inverted_index.trip | 27 |
| abstract_inverted_index.user | 91 |
| abstract_inverted_index.with | 134, 137 |
| abstract_inverted_index.(LLM) | 3 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.about | 30 |
| abstract_inverted_index.city. | 33 |
| abstract_inverted_index.large | 13 |
| abstract_inverted_index.load, | 16 |
| abstract_inverted_index.model | 2 |
| abstract_inverted_index.steer | 81 |
| abstract_inverted_index.study | 92, 124 |
| abstract_inverted_index.task, | 117 |
| abstract_inverted_index.tasks | 22 |
| abstract_inverted_index.users | 39, 63, 96, 120, 128 |
| abstract_inverted_index.allows | 62 |
| abstract_inverted_index.easily | 80, 131 |
| abstract_inverted_index.goals. | 57 |
| abstract_inverted_index.guides | 119 |
| abstract_inverted_index.impose | 11 |
| abstract_inverted_index.little | 41 |
| abstract_inverted_index.models | 82 |
| abstract_inverted_index.tasks, | 107 |
| abstract_inverted_index.today, | 9 |
| abstract_inverted_index.useful | 112 |
| abstract_inverted_index.Because | 34 |
| abstract_inverted_index.ability | 51 |
| abstract_inverted_index.because | 108 |
| abstract_inverted_index.choices | 74 |
| abstract_inverted_index.conduct | 89 |
| abstract_inverted_index.explore | 68 |
| abstract_inverted_index.helpful | 99 |
| abstract_inverted_index.powered | 4 |
| abstract_inverted_index.specify | 53 |
| abstract_inverted_index.through | 72 |
| abstract_inverted_index."scent", | 49 |
| abstract_inverted_index.chatbots | 5 |
| abstract_inverted_index.generate | 84 |
| abstract_inverted_index.language | 1 |
| abstract_inverted_index.learning | 29 |
| abstract_inverted_index.navigate | 71 |
| abstract_inverted_index.options, | 70 |
| abstract_inverted_index.planning | 25, 106 |
| abstract_inverted_index.provides | 110 |
| abstract_inverted_index.suggests | 126 |
| abstract_inverted_index.textual, | 38 |
| abstract_inverted_index.cognitive | 15 |
| abstract_inverted_index.different | 69 |
| abstract_inverted_index.introduce | 59 |
| abstract_inverted_index.planning. | 122 |
| abstract_inverted_index.primarily | 7 |
| abstract_inverted_index.responses | 133 |
| abstract_inverted_index.structure | 65, 114 |
| abstract_inverted_index.thoughts, | 66 |
| abstract_inverted_index.ExploreLLM | 60, 102 |
| abstract_inverted_index.especially | 17 |
| abstract_inverted_index.high-level | 54, 135 |
| abstract_inverted_index.responses. | 87 |
| abstract_inverted_index.structure, | 47 |
| abstract_inverted_index.text-based | 8 |
| abstract_inverted_index.ExploreLLM. | 138 |
| abstract_inverted_index.exploratory | 19, 104 |
| abstract_inverted_index.interaction | 36 |
| abstract_inverted_index.personalize | 132 |
| abstract_inverted_index.preferences | 55, 136 |
| abstract_inverted_index.scaffolding | 42 |
| abstract_inverted_index.schema-like | 113 |
| abstract_inverted_index.sensemaking | 21 |
| abstract_inverted_index.personalized | 86 |
| abstract_inverted_index.informational | 48 |
| abstract_inverted_index.interactional | 14 |
| abstract_inverted_index.recommendations, | 76 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.98404811 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |