Beyond expectations: residual dynamic mode decomposition and variance for stochastic dynamical systems Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s11071-023-09135-w
Koopman operators linearize nonlinear dynamical systems, making their spectral information of crucial interest. Numerous algorithms have been developed to approximate these spectral properties, and dynamic mode decomposition (DMD) stands out as the poster child of projection-based methods. Although the Koopman operator itself is linear, the fact that it acts in an infinite-dimensional space of observables poses challenges. These include spurious modes, essential spectra, and the verification of Koopman mode decompositions. While recent work has addressed these challenges for deterministic systems, there remains a notable gap in verified DMD methods for stochastic systems, where the Koopman operator measures the expectation of observables. We show that it is necessary to go beyond expectations to address these issues. By incorporating variance into the Koopman framework, we address these challenges. Through an additional DMD-type matrix, we approximate the sum of a squared residual and a variance term, each of which can be approximated individually using batched snapshot data. This allows verified computation of the spectral properties of stochastic Koopman operators, controlling the projection error. We also introduce the concept of variance-pseudospectra to gauge statistical coherency. Finally, we present a suite of convergence results for the spectral information of stochastic Koopman operators. Our study concludes with practical applications using both simulated and experimental data. In neural recordings from awake mice, we demonstrate how variance-pseudospectra can reveal physiologically significant information unavailable to standard expectation-based dynamical models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s11071-023-09135-w
- https://link.springer.com/content/pdf/10.1007/s11071-023-09135-w.pdf
- OA Status
- hybrid
- Cited By
- 17
- References
- 88
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390144100
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390144100Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s11071-023-09135-wDigital Object Identifier
- Title
-
Beyond expectations: residual dynamic mode decomposition and variance for stochastic dynamical systemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-23Full publication date if available
- Authors
-
Matthew J. Colbrook, Qin Li, Ryan V. Raut, Alex TownsendList of authors in order
- Landing page
-
https://doi.org/10.1007/s11071-023-09135-wPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s11071-023-09135-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s11071-023-09135-w.pdfDirect OA link when available
- Concepts
-
Dynamic mode decomposition, Residual, Observable, Dynamical systems theory, Applied mathematics, Variance (accounting), Mathematics, Operator (biology), Spurious relationship, Nonlinear system, Projection (relational algebra), Computer science, Algorithm, Statistics, Quantum mechanics, Chemistry, Accounting, Business, Transcription factor, Machine learning, Repressor, Physics, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 5, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
88Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390144100 |
|---|---|
| doi | https://doi.org/10.1007/s11071-023-09135-w |
| ids.doi | https://doi.org/10.1007/s11071-023-09135-w |
| ids.openalex | https://openalex.org/W4390144100 |
| fwci | 3.66647798 |
| type | article |
| title | Beyond expectations: residual dynamic mode decomposition and variance for stochastic dynamical systems |
| awards[0].id | https://openalex.org/G3280735326 |
| awards[0].funder_id | https://openalex.org/F4320320184 |
| awards[0].display_name | |
| awards[0].funder_award_id | Cecil King Travel Scholarship |
| awards[0].funder_display_name | London Mathematical Society |
| awards[1].id | https://openalex.org/G4772405502 |
| awards[1].funder_id | https://openalex.org/F4320332172 |
| awards[1].display_name | |
| awards[1].funder_award_id | DMS-1952757, DMS-2045646 |
| awards[1].funder_display_name | Directorate for Mathematical and Physical Sciences |
| awards[2].id | https://openalex.org/G6160996978 |
| awards[2].funder_id | https://openalex.org/F4320309434 |
| awards[2].display_name | |
| awards[2].funder_award_id | DMS-2308440, ONR-N000142112140 |
| awards[2].funder_display_name | University of Wisconsin-Madison |
| biblio.issue | 3 |
| biblio.volume | 112 |
| biblio.last_page | 2061 |
| biblio.first_page | 2037 |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T10928 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Probabilistic and Robust Engineering Design |
| topics[2].id | https://openalex.org/T11236 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9732999801635742 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Control Systems and Identification |
| funders[0].id | https://openalex.org/F4320309434 |
| funders[0].ror | https://ror.org/01y2jtd41 |
| funders[0].display_name | University of Wisconsin-Madison |
| funders[1].id | https://openalex.org/F4320320184 |
| funders[1].ror | https://ror.org/01r1e1h27 |
| funders[1].display_name | London Mathematical Society |
| funders[2].id | https://openalex.org/F4320332172 |
| funders[2].ror | https://ror.org/029b7h395 |
| funders[2].display_name | Directorate for Mathematical and Physical Sciences |
| is_xpac | False |
| apc_list.value | 3390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 4390 |
| apc_paid.value | 3390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 4390 |
| concepts[0].id | https://openalex.org/C2777032711 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9162205457687378 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5318993 |
| concepts[0].display_name | Dynamic mode decomposition |
| concepts[1].id | https://openalex.org/C155512373 |
| concepts[1].level | 2 |
| concepts[1].score | 0.608017086982727 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[1].display_name | Residual |
| concepts[2].id | https://openalex.org/C32848918 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5179466605186462 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q845789 |
| concepts[2].display_name | Observable |
| concepts[3].id | https://openalex.org/C79379906 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5006964206695557 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3174497 |
| concepts[3].display_name | Dynamical systems theory |
| concepts[4].id | https://openalex.org/C28826006 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4901884198188782 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[4].display_name | Applied mathematics |
| concepts[5].id | https://openalex.org/C196083921 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48804035782814026 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[5].display_name | Variance (accounting) |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.48617762327194214 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C17020691 |
| concepts[7].level | 5 |
| concepts[7].score | 0.4848969578742981 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[7].display_name | Operator (biology) |
| concepts[8].id | https://openalex.org/C97256817 |
| concepts[8].level | 2 |
| concepts[8].score | 0.467085599899292 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1462316 |
| concepts[8].display_name | Spurious relationship |
| concepts[9].id | https://openalex.org/C158622935 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45042502880096436 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[9].display_name | Nonlinear system |
| concepts[10].id | https://openalex.org/C57493831 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44058680534362793 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[10].display_name | Projection (relational algebra) |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.43726468086242676 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3146807551383972 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10872340202331543 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| concepts[16].id | https://openalex.org/C121955636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[16].display_name | Accounting |
| concepts[17].id | https://openalex.org/C144133560 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[17].display_name | Business |
| concepts[18].id | https://openalex.org/C86339819 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[18].display_name | Transcription factor |
| concepts[19].id | https://openalex.org/C119857082 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[19].display_name | Machine learning |
| concepts[20].id | https://openalex.org/C158448853 |
| concepts[20].level | 4 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[20].display_name | Repressor |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C104317684 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[22].display_name | Gene |
| concepts[23].id | https://openalex.org/C55493867 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[23].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/dynamic-mode-decomposition |
| keywords[0].score | 0.9162205457687378 |
| keywords[0].display_name | Dynamic mode decomposition |
| keywords[1].id | https://openalex.org/keywords/residual |
| keywords[1].score | 0.608017086982727 |
| keywords[1].display_name | Residual |
| keywords[2].id | https://openalex.org/keywords/observable |
| keywords[2].score | 0.5179466605186462 |
| keywords[2].display_name | Observable |
| keywords[3].id | https://openalex.org/keywords/dynamical-systems-theory |
| keywords[3].score | 0.5006964206695557 |
| keywords[3].display_name | Dynamical systems theory |
| keywords[4].id | https://openalex.org/keywords/applied-mathematics |
| keywords[4].score | 0.4901884198188782 |
| keywords[4].display_name | Applied mathematics |
| keywords[5].id | https://openalex.org/keywords/variance |
| keywords[5].score | 0.48804035782814026 |
| keywords[5].display_name | Variance (accounting) |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.48617762327194214 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/operator |
| keywords[7].score | 0.4848969578742981 |
| keywords[7].display_name | Operator (biology) |
| keywords[8].id | https://openalex.org/keywords/spurious-relationship |
| keywords[8].score | 0.467085599899292 |
| keywords[8].display_name | Spurious relationship |
| keywords[9].id | https://openalex.org/keywords/nonlinear-system |
| keywords[9].score | 0.45042502880096436 |
| keywords[9].display_name | Nonlinear system |
| keywords[10].id | https://openalex.org/keywords/projection |
| keywords[10].score | 0.44058680534362793 |
| keywords[10].display_name | Projection (relational algebra) |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.43726468086242676 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.3146807551383972 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.10872340202331543 |
| keywords[13].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1007/s11071-023-09135-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S138681734 |
| locations[0].source.issn | 0924-090X, 1573-269X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0924-090X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Nonlinear Dynamics |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s11071-023-09135-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Nonlinear Dynamics |
| locations[0].landing_page_url | https://doi.org/10.1007/s11071-023-09135-w |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5082589336 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4964-9575 |
| authorships[0].author.display_name | Matthew J. Colbrook |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[0].affiliations[0].raw_affiliation_string | DAMTP, University of Cambridge, Cambridge, CB3 0WA, UK |
| authorships[0].institutions[0].id | https://openalex.org/I241749 |
| authorships[0].institutions[0].ror | https://ror.org/013meh722 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Cambridge |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matthew J. Colbrook |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | DAMTP, University of Cambridge, Cambridge, CB3 0WA, UK |
| authorships[1].author.id | https://openalex.org/A5100438891 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9210-8948 |
| authorships[1].author.display_name | Qin Li |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics, University of Wisconsin-Madison, Madison, WI, 53706, USA |
| authorships[1].institutions[0].id | https://openalex.org/I135310074 |
| authorships[1].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qin Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics, University of Wisconsin-Madison, Madison, WI, 53706, USA |
| authorships[2].author.id | https://openalex.org/A5021007014 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8761-1431 |
| authorships[2].author.display_name | Ryan V. Raut |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210140341 |
| authorships[2].affiliations[0].raw_affiliation_string | Allen Institute, Seattle, WA, 98109, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210140341 |
| authorships[2].institutions[0].ror | https://ror.org/03cpe7c52 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210140341 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Allen Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ryan V. Raut |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Allen Institute, Seattle, WA, 98109, USA |
| authorships[3].author.id | https://openalex.org/A5003110773 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8183-7077 |
| authorships[3].author.display_name | Alex Townsend |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mathematics, Cornell University, Ithaca, NY, 14853, USA |
| authorships[3].institutions[0].id | https://openalex.org/I205783295 |
| authorships[3].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Cornell University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Alex Townsend |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mathematics, Cornell University, Ithaca, NY, 14853, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s11071-023-09135-w.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Beyond expectations: residual dynamic mode decomposition and variance for stochastic dynamical systems |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W3113091479, https://openalex.org/W941090075, https://openalex.org/W2162899405, https://openalex.org/W2044987316, https://openalex.org/W2237480245, https://openalex.org/W3134374554, https://openalex.org/W2519167559, https://openalex.org/W2075065631, https://openalex.org/W4287392890, https://openalex.org/W3167461778 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s11071-023-09135-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S138681734 |
| best_oa_location.source.issn | 0924-090X, 1573-269X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0924-090X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Nonlinear Dynamics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11071-023-09135-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Nonlinear Dynamics |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s11071-023-09135-w |
| primary_location.id | doi:10.1007/s11071-023-09135-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S138681734 |
| primary_location.source.issn | 0924-090X, 1573-269X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0924-090X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Nonlinear Dynamics |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11071-023-09135-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Nonlinear Dynamics |
| primary_location.landing_page_url | https://doi.org/10.1007/s11071-023-09135-w |
| publication_date | 2023-12-23 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2551318894, https://openalex.org/W2767099474, https://openalex.org/W1965943102, https://openalex.org/W4322742850, https://openalex.org/W1559761527, https://openalex.org/W1981193003, https://openalex.org/W2074057741, https://openalex.org/W2968169371, https://openalex.org/W1860903952, https://openalex.org/W2510030309, https://openalex.org/W3129637124, https://openalex.org/W3038118776, https://openalex.org/W2151084831, https://openalex.org/W2949154552, https://openalex.org/W2040690030, https://openalex.org/W2105380935, https://openalex.org/W4213367101, https://openalex.org/W3189651510, https://openalex.org/W4380887250, https://openalex.org/W4316690596, https://openalex.org/W4390144100, https://openalex.org/W2973022759, https://openalex.org/W1542004730, https://openalex.org/W2887603774, https://openalex.org/W2208344185, https://openalex.org/W3110151578, https://openalex.org/W2963013180, https://openalex.org/W2795833322, https://openalex.org/W2080991705, https://openalex.org/W4205571775, https://openalex.org/W2156603435, https://openalex.org/W1908611567, https://openalex.org/W1990318523, https://openalex.org/W3136945292, https://openalex.org/W2615252773, https://openalex.org/W2005308357, https://openalex.org/W2594932112, https://openalex.org/W2964350754, https://openalex.org/W4320458188, https://openalex.org/W4238160257, https://openalex.org/W2063233216, https://openalex.org/W1635210704, https://openalex.org/W2986903508, https://openalex.org/W2016315007, https://openalex.org/W1519578210, https://openalex.org/W2116679324, https://openalex.org/W2067035505, https://openalex.org/W2126999002, https://openalex.org/W4225773934, https://openalex.org/W1854164810, https://openalex.org/W2094686470, https://openalex.org/W1989544083, https://openalex.org/W3194182445, https://openalex.org/W2951777958, https://openalex.org/W2766505053, https://openalex.org/W1723433682, https://openalex.org/W2170054433, https://openalex.org/W2160619958, https://openalex.org/W2164954534, https://openalex.org/W2076958409, https://openalex.org/W2014356541, https://openalex.org/W2315297180, https://openalex.org/W2046898277, https://openalex.org/W3124792448, https://openalex.org/W2795067111, https://openalex.org/W2937274403, https://openalex.org/W4300059230, https://openalex.org/W2098382127, https://openalex.org/W2002902303, https://openalex.org/W2615735362, https://openalex.org/W149522324, https://openalex.org/W2078898317, https://openalex.org/W2475216385, https://openalex.org/W3094983888, https://openalex.org/W3126606216, https://openalex.org/W1591018827, https://openalex.org/W2395962256, https://openalex.org/W1974975426, https://openalex.org/W3123743774, https://openalex.org/W3101096811, https://openalex.org/W3100184721, https://openalex.org/W3099462237, https://openalex.org/W3104556657, https://openalex.org/W3104635675, https://openalex.org/W3098781239, https://openalex.org/W1533006072, https://openalex.org/W3099803807, https://openalex.org/W3102306519 |
| referenced_works_count | 88 |
| abstract_inverted_index.a | 83, 137, 141, 185 |
| abstract_inverted_index.By | 116 |
| abstract_inverted_index.In | 210 |
| abstract_inverted_index.We | 102, 171 |
| abstract_inverted_index.an | 51, 128 |
| abstract_inverted_index.as | 31 |
| abstract_inverted_index.be | 148 |
| abstract_inverted_index.go | 109 |
| abstract_inverted_index.in | 50, 86 |
| abstract_inverted_index.is | 43, 106 |
| abstract_inverted_index.it | 48, 105 |
| abstract_inverted_index.of | 11, 35, 54, 67, 100, 136, 145, 159, 163, 176, 187, 194 |
| abstract_inverted_index.to | 19, 108, 112, 178, 226 |
| abstract_inverted_index.we | 123, 132, 183, 216 |
| abstract_inverted_index.DMD | 88 |
| abstract_inverted_index.Our | 198 |
| abstract_inverted_index.and | 24, 64, 140, 207 |
| abstract_inverted_index.can | 147, 220 |
| abstract_inverted_index.for | 78, 90, 190 |
| abstract_inverted_index.gap | 85 |
| abstract_inverted_index.has | 74 |
| abstract_inverted_index.how | 218 |
| abstract_inverted_index.out | 30 |
| abstract_inverted_index.sum | 135 |
| abstract_inverted_index.the | 32, 39, 45, 65, 94, 98, 120, 134, 160, 168, 174, 191 |
| abstract_inverted_index.This | 155 |
| abstract_inverted_index.acts | 49 |
| abstract_inverted_index.also | 172 |
| abstract_inverted_index.been | 17 |
| abstract_inverted_index.both | 205 |
| abstract_inverted_index.each | 144 |
| abstract_inverted_index.fact | 46 |
| abstract_inverted_index.from | 213 |
| abstract_inverted_index.have | 16 |
| abstract_inverted_index.into | 119 |
| abstract_inverted_index.mode | 26, 69 |
| abstract_inverted_index.show | 103 |
| abstract_inverted_index.that | 47, 104 |
| abstract_inverted_index.with | 201 |
| abstract_inverted_index.work | 73 |
| abstract_inverted_index.(DMD) | 28 |
| abstract_inverted_index.These | 58 |
| abstract_inverted_index.While | 71 |
| abstract_inverted_index.awake | 214 |
| abstract_inverted_index.child | 34 |
| abstract_inverted_index.data. | 154, 209 |
| abstract_inverted_index.gauge | 179 |
| abstract_inverted_index.mice, | 215 |
| abstract_inverted_index.poses | 56 |
| abstract_inverted_index.space | 53 |
| abstract_inverted_index.study | 199 |
| abstract_inverted_index.suite | 186 |
| abstract_inverted_index.term, | 143 |
| abstract_inverted_index.their | 8 |
| abstract_inverted_index.there | 81 |
| abstract_inverted_index.these | 21, 76, 114, 125 |
| abstract_inverted_index.using | 151, 204 |
| abstract_inverted_index.where | 93 |
| abstract_inverted_index.which | 146 |
| abstract_inverted_index.allows | 156 |
| abstract_inverted_index.beyond | 110 |
| abstract_inverted_index.error. | 170 |
| abstract_inverted_index.itself | 42 |
| abstract_inverted_index.making | 7 |
| abstract_inverted_index.modes, | 61 |
| abstract_inverted_index.neural | 211 |
| abstract_inverted_index.poster | 33 |
| abstract_inverted_index.recent | 72 |
| abstract_inverted_index.reveal | 221 |
| abstract_inverted_index.stands | 29 |
| abstract_inverted_index.Koopman | 1, 40, 68, 95, 121, 165, 196 |
| abstract_inverted_index.Through | 127 |
| abstract_inverted_index.address | 113, 124 |
| abstract_inverted_index.batched | 152 |
| abstract_inverted_index.concept | 175 |
| abstract_inverted_index.crucial | 12 |
| abstract_inverted_index.dynamic | 25 |
| abstract_inverted_index.include | 59 |
| abstract_inverted_index.issues. | 115 |
| abstract_inverted_index.linear, | 44 |
| abstract_inverted_index.matrix, | 131 |
| abstract_inverted_index.methods | 89 |
| abstract_inverted_index.models. | 230 |
| abstract_inverted_index.notable | 84 |
| abstract_inverted_index.present | 184 |
| abstract_inverted_index.remains | 82 |
| abstract_inverted_index.results | 189 |
| abstract_inverted_index.squared | 138 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 38 |
| abstract_inverted_index.DMD-type | 130 |
| abstract_inverted_index.Finally, | 182 |
| abstract_inverted_index.Numerous | 14 |
| abstract_inverted_index.measures | 97 |
| abstract_inverted_index.methods. | 37 |
| abstract_inverted_index.operator | 41, 96 |
| abstract_inverted_index.residual | 139 |
| abstract_inverted_index.snapshot | 153 |
| abstract_inverted_index.spectra, | 63 |
| abstract_inverted_index.spectral | 9, 22, 161, 192 |
| abstract_inverted_index.spurious | 60 |
| abstract_inverted_index.standard | 227 |
| abstract_inverted_index.systems, | 6, 80, 92 |
| abstract_inverted_index.variance | 118, 142 |
| abstract_inverted_index.verified | 87, 157 |
| abstract_inverted_index.addressed | 75 |
| abstract_inverted_index.concludes | 200 |
| abstract_inverted_index.developed | 18 |
| abstract_inverted_index.dynamical | 5, 229 |
| abstract_inverted_index.essential | 62 |
| abstract_inverted_index.interest. | 13 |
| abstract_inverted_index.introduce | 173 |
| abstract_inverted_index.linearize | 3 |
| abstract_inverted_index.necessary | 107 |
| abstract_inverted_index.nonlinear | 4 |
| abstract_inverted_index.operators | 2 |
| abstract_inverted_index.practical | 202 |
| abstract_inverted_index.simulated | 206 |
| abstract_inverted_index.additional | 129 |
| abstract_inverted_index.algorithms | 15 |
| abstract_inverted_index.challenges | 77 |
| abstract_inverted_index.coherency. | 181 |
| abstract_inverted_index.framework, | 122 |
| abstract_inverted_index.operators, | 166 |
| abstract_inverted_index.operators. | 197 |
| abstract_inverted_index.projection | 169 |
| abstract_inverted_index.properties | 162 |
| abstract_inverted_index.recordings | 212 |
| abstract_inverted_index.stochastic | 91, 164, 195 |
| abstract_inverted_index.approximate | 20, 133 |
| abstract_inverted_index.challenges. | 57, 126 |
| abstract_inverted_index.computation | 158 |
| abstract_inverted_index.controlling | 167 |
| abstract_inverted_index.convergence | 188 |
| abstract_inverted_index.demonstrate | 217 |
| abstract_inverted_index.expectation | 99 |
| abstract_inverted_index.information | 10, 193, 224 |
| abstract_inverted_index.observables | 55 |
| abstract_inverted_index.properties, | 23 |
| abstract_inverted_index.significant | 223 |
| abstract_inverted_index.statistical | 180 |
| abstract_inverted_index.unavailable | 225 |
| abstract_inverted_index.applications | 203 |
| abstract_inverted_index.approximated | 149 |
| abstract_inverted_index.expectations | 111 |
| abstract_inverted_index.experimental | 208 |
| abstract_inverted_index.individually | 150 |
| abstract_inverted_index.observables. | 101 |
| abstract_inverted_index.verification | 66 |
| abstract_inverted_index.decomposition | 27 |
| abstract_inverted_index.deterministic | 79 |
| abstract_inverted_index.incorporating | 117 |
| abstract_inverted_index.decompositions. | 70 |
| abstract_inverted_index.physiologically | 222 |
| abstract_inverted_index.projection-based | 36 |
| abstract_inverted_index.expectation-based | 228 |
| abstract_inverted_index.infinite-dimensional | 52 |
| abstract_inverted_index.variance-pseudospectra | 177, 219 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5082589336 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I241749 |
| citation_normalized_percentile.value | 0.92780172 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |