Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2103.05959
Recently, research efforts have been concentrated on revealing how pre-trained model makes a difference in neural network performance. Self-supervision and semi-supervised learning technologies have been extensively explored by the community and are proven to be of great potential in obtaining a powerful pre-trained model. However, these models require huge training costs (i.e., hundreds of millions of images or training iterations). In this paper, we propose to improve existing baseline networks via knowledge distillation from off-the-shelf pre-trained big powerful models. Different from existing knowledge distillation frameworks which require student model to be consistent with both soft-label generated by teacher model and hard-label annotated by humans, our solution performs distillation by only driving prediction of the student model consistent with that of the teacher model. Therefore, our distillation setting can get rid of manually labeled data and can be trained with extra unlabeled data to fully exploit capability of teacher model for better learning. We empirically find that such simple distillation settings perform extremely effective, for example, the top-1 accuracy on ImageNet-1k validation set of MobileNetV3-large and ResNet50-D can be significantly improved from 75.2% to 79% and 79.1% to 83%, respectively. We have also thoroughly analyzed what are dominant factors that affect the distillation performance and how they make a difference. Extensive downstream computer vision tasks, including transfer learning, object detection and semantic segmentation, can significantly benefit from the distilled pretrained models. All our experiments are implemented based on PaddlePaddle, codes and a series of improved pretrained models with ssld suffix are available in PaddleClas.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2103.05959
- https://arxiv.org/pdf/2103.05959
- OA Status
- green
- Cited By
- 2
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3135680385
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3135680385Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2103.05959Digital Object Identifier
- Title
-
Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve BackbonesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-03-10Full publication date if available
- Authors
-
Cheng Cui, Ruoyu Guo, Yuning Du, Dongliang He, Fu Li, Zewu Wu, Qiwen Liu, Shilei Wen, Jizhou Huang, Xiaoguang Hu, Dianhai Yu, Errui Ding, Yanjun MaList of authors in order
- Landing page
-
https://arxiv.org/abs/2103.05959Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2103.05959Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2103.05959Direct OA link when available
- Concepts
-
Computer science, Distillation, Machine learning, Exploit, Artificial intelligence, Set (abstract data type), Artificial neural network, Simple (philosophy), Segmentation, Philosophy, Programming language, Chemistry, Computer security, Epistemology, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3135680385 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2103.05959 |
| ids.doi | https://doi.org/10.48550/arxiv.2103.05959 |
| ids.mag | 3135680385 |
| ids.openalex | https://openalex.org/W3135680385 |
| fwci | |
| type | preprint |
| title | Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9991999864578247 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8091758489608765 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C204030448 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8031342625617981 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q101017 |
| concepts[1].display_name | Distillation |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6591821908950806 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C165696696 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6511985063552856 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[3].display_name | Exploit |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6508333683013916 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C177264268 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5730438232421875 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[5].display_name | Set (abstract data type) |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.549370288848877 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C2780586882 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5002992153167725 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[7].display_name | Simple (philosophy) |
| concepts[8].id | https://openalex.org/C89600930 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4338605999946594 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[8].display_name | Segmentation |
| concepts[9].id | https://openalex.org/C138885662 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[9].display_name | Philosophy |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C38652104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[12].display_name | Computer security |
| concepts[13].id | https://openalex.org/C111472728 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[13].display_name | Epistemology |
| concepts[14].id | https://openalex.org/C178790620 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[14].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8091758489608765 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/distillation |
| keywords[1].score | 0.8031342625617981 |
| keywords[1].display_name | Distillation |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.6591821908950806 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/exploit |
| keywords[3].score | 0.6511985063552856 |
| keywords[3].display_name | Exploit |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6508333683013916 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/set |
| keywords[5].score | 0.5730438232421875 |
| keywords[5].display_name | Set (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.549370288848877 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/simple |
| keywords[7].score | 0.5002992153167725 |
| keywords[7].display_name | Simple (philosophy) |
| keywords[8].id | https://openalex.org/keywords/segmentation |
| keywords[8].score | 0.4338605999946594 |
| keywords[8].display_name | Segmentation |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2103.05959 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2103.05959 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2103.05959 |
| locations[1].id | doi:10.48550/arxiv.2103.05959 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2103.05959 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102068162 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Cheng Cui |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cheng Cui |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5083640035 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-0335-4259 |
| authorships[1].author.display_name | Ruoyu Guo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruoyu Guo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5010944460 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-4995-5472 |
| authorships[2].author.display_name | Yuning Du |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuning Du |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5018276259 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1129-8610 |
| authorships[3].author.display_name | Dongliang He |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dongliang He |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100324309 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8819-0547 |
| authorships[4].author.display_name | Fu Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fu Li |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5048018111 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Zewu Wu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zewu Wu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5037089484 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2776-9162 |
| authorships[6].author.display_name | Qiwen Liu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Qiwen Liu |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5101236503 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Shilei Wen |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Shilei Wen |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5005312000 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1022-0309 |
| authorships[8].author.display_name | Jizhou Huang |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jizhou Huang |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5100602787 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-8092-6246 |
| authorships[9].author.display_name | Xiaoguang Hu |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Xiaoguang Hu |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5084155236 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-0163-2603 |
| authorships[10].author.display_name | Dianhai Yu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Dianhai Yu |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5050031109 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-1867-5378 |
| authorships[11].author.display_name | Errui Ding |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Errui Ding |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5047724561 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-1232-6142 |
| authorships[12].author.display_name | Yanjun Ma |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Yanjun Ma |
| authorships[12].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2103.05959 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-03-15T00:00:00 |
| display_name | Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W17155033, https://openalex.org/W3207760230, https://openalex.org/W1496222301, https://openalex.org/W1590307681, https://openalex.org/W2536018345, https://openalex.org/W4312814274, https://openalex.org/W4285370786, https://openalex.org/W2296488620, https://openalex.org/W2358353312, https://openalex.org/W2353836703 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2103.05959 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2103.05959 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2103.05959 |
| primary_location.id | pmh:oai:arXiv.org:2103.05959 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2103.05959 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2103.05959 |
| publication_date | 2021-03-10 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2962369866, https://openalex.org/W2560023338, https://openalex.org/W2412782625, https://openalex.org/W2274287116, https://openalex.org/W2976135203, https://openalex.org/W2124386111, https://openalex.org/W1690739335, https://openalex.org/W2340897893, https://openalex.org/W1846799578, https://openalex.org/W2964309882, https://openalex.org/W2949736877, https://openalex.org/W3034368386, https://openalex.org/W1821462560, https://openalex.org/W2047643928, https://openalex.org/W2953106684, https://openalex.org/W2997941347, https://openalex.org/W3035524453, https://openalex.org/W2963855133, https://openalex.org/W2951104886, https://openalex.org/W2739879705, https://openalex.org/W3118608800, https://openalex.org/W3106250896, https://openalex.org/W2017814585, https://openalex.org/W2978426779, https://openalex.org/W2966926453, https://openalex.org/W2971315489, https://openalex.org/W3001197829, https://openalex.org/W2630837129, https://openalex.org/W2943152387, https://openalex.org/W3135071678, https://openalex.org/W2549139847, https://openalex.org/W2963420686, https://openalex.org/W3014641072, https://openalex.org/W2194775991, https://openalex.org/W3109301572, https://openalex.org/W2612445135, https://openalex.org/W3035160371, https://openalex.org/W2982083293, https://openalex.org/W1861492603, https://openalex.org/W2963465221, https://openalex.org/W2592691248, https://openalex.org/W2592335154, https://openalex.org/W2998564420, https://openalex.org/W2108598243, https://openalex.org/W2796347433 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 12, 40, 207, 240 |
| abstract_inverted_index.In | 60 |
| abstract_inverted_index.We | 152, 189 |
| abstract_inverted_index.be | 34, 90, 136, 177 |
| abstract_inverted_index.by | 27, 96, 102, 108 |
| abstract_inverted_index.in | 14, 38, 251 |
| abstract_inverted_index.of | 35, 53, 55, 112, 119, 130, 146, 172, 242 |
| abstract_inverted_index.on | 6, 168, 236 |
| abstract_inverted_index.or | 57 |
| abstract_inverted_index.to | 33, 65, 89, 142, 182, 186 |
| abstract_inverted_index.we | 63 |
| abstract_inverted_index.79% | 183 |
| abstract_inverted_index.All | 230 |
| abstract_inverted_index.and | 19, 30, 99, 134, 174, 184, 203, 219, 239 |
| abstract_inverted_index.are | 31, 195, 233, 249 |
| abstract_inverted_index.big | 76 |
| abstract_inverted_index.can | 127, 135, 176, 222 |
| abstract_inverted_index.for | 149, 163 |
| abstract_inverted_index.get | 128 |
| abstract_inverted_index.how | 8, 204 |
| abstract_inverted_index.our | 104, 124, 231 |
| abstract_inverted_index.rid | 129 |
| abstract_inverted_index.set | 171 |
| abstract_inverted_index.the | 28, 113, 120, 165, 200, 226 |
| abstract_inverted_index.via | 70 |
| abstract_inverted_index.83%, | 187 |
| abstract_inverted_index.also | 191 |
| abstract_inverted_index.been | 4, 24 |
| abstract_inverted_index.both | 93 |
| abstract_inverted_index.data | 133, 141 |
| abstract_inverted_index.find | 154 |
| abstract_inverted_index.from | 73, 80, 180, 225 |
| abstract_inverted_index.have | 3, 23, 190 |
| abstract_inverted_index.huge | 48 |
| abstract_inverted_index.make | 206 |
| abstract_inverted_index.only | 109 |
| abstract_inverted_index.ssld | 247 |
| abstract_inverted_index.such | 156 |
| abstract_inverted_index.that | 118, 155, 198 |
| abstract_inverted_index.they | 205 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.what | 194 |
| abstract_inverted_index.with | 92, 117, 138, 246 |
| abstract_inverted_index.75.2% | 181 |
| abstract_inverted_index.79.1% | 185 |
| abstract_inverted_index.based | 235 |
| abstract_inverted_index.codes | 238 |
| abstract_inverted_index.costs | 50 |
| abstract_inverted_index.extra | 139 |
| abstract_inverted_index.fully | 143 |
| abstract_inverted_index.great | 36 |
| abstract_inverted_index.makes | 11 |
| abstract_inverted_index.model | 10, 88, 98, 115, 148 |
| abstract_inverted_index.these | 45 |
| abstract_inverted_index.top-1 | 166 |
| abstract_inverted_index.which | 85 |
| abstract_inverted_index.(i.e., | 51 |
| abstract_inverted_index.affect | 199 |
| abstract_inverted_index.better | 150 |
| abstract_inverted_index.images | 56 |
| abstract_inverted_index.model. | 43, 122 |
| abstract_inverted_index.models | 46, 245 |
| abstract_inverted_index.neural | 15 |
| abstract_inverted_index.object | 217 |
| abstract_inverted_index.paper, | 62 |
| abstract_inverted_index.proven | 32 |
| abstract_inverted_index.series | 241 |
| abstract_inverted_index.simple | 157 |
| abstract_inverted_index.suffix | 248 |
| abstract_inverted_index.tasks, | 213 |
| abstract_inverted_index.vision | 212 |
| abstract_inverted_index.benefit | 224 |
| abstract_inverted_index.driving | 110 |
| abstract_inverted_index.efforts | 2 |
| abstract_inverted_index.exploit | 144 |
| abstract_inverted_index.factors | 197 |
| abstract_inverted_index.humans, | 103 |
| abstract_inverted_index.improve | 66 |
| abstract_inverted_index.labeled | 132 |
| abstract_inverted_index.models. | 78, 229 |
| abstract_inverted_index.network | 16 |
| abstract_inverted_index.perform | 160 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.require | 47, 86 |
| abstract_inverted_index.setting | 126 |
| abstract_inverted_index.student | 87, 114 |
| abstract_inverted_index.teacher | 97, 121, 147 |
| abstract_inverted_index.trained | 137 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.accuracy | 167 |
| abstract_inverted_index.analyzed | 193 |
| abstract_inverted_index.baseline | 68 |
| abstract_inverted_index.computer | 211 |
| abstract_inverted_index.dominant | 196 |
| abstract_inverted_index.example, | 164 |
| abstract_inverted_index.existing | 67, 81 |
| abstract_inverted_index.explored | 26 |
| abstract_inverted_index.hundreds | 52 |
| abstract_inverted_index.improved | 179, 243 |
| abstract_inverted_index.learning | 21 |
| abstract_inverted_index.manually | 131 |
| abstract_inverted_index.millions | 54 |
| abstract_inverted_index.networks | 69 |
| abstract_inverted_index.performs | 106 |
| abstract_inverted_index.powerful | 41, 77 |
| abstract_inverted_index.research | 1 |
| abstract_inverted_index.semantic | 220 |
| abstract_inverted_index.settings | 159 |
| abstract_inverted_index.solution | 105 |
| abstract_inverted_index.training | 49, 58 |
| abstract_inverted_index.transfer | 215 |
| abstract_inverted_index.Different | 79 |
| abstract_inverted_index.Extensive | 209 |
| abstract_inverted_index.Recently, | 0 |
| abstract_inverted_index.annotated | 101 |
| abstract_inverted_index.available | 250 |
| abstract_inverted_index.community | 29 |
| abstract_inverted_index.detection | 218 |
| abstract_inverted_index.distilled | 227 |
| abstract_inverted_index.extremely | 161 |
| abstract_inverted_index.generated | 95 |
| abstract_inverted_index.including | 214 |
| abstract_inverted_index.knowledge | 71, 82 |
| abstract_inverted_index.learning, | 216 |
| abstract_inverted_index.learning. | 151 |
| abstract_inverted_index.obtaining | 39 |
| abstract_inverted_index.potential | 37 |
| abstract_inverted_index.revealing | 7 |
| abstract_inverted_index.unlabeled | 140 |
| abstract_inverted_index.ResNet50-D | 175 |
| abstract_inverted_index.Therefore, | 123 |
| abstract_inverted_index.capability | 145 |
| abstract_inverted_index.consistent | 91, 116 |
| abstract_inverted_index.difference | 13 |
| abstract_inverted_index.downstream | 210 |
| abstract_inverted_index.effective, | 162 |
| abstract_inverted_index.frameworks | 84 |
| abstract_inverted_index.hard-label | 100 |
| abstract_inverted_index.prediction | 111 |
| abstract_inverted_index.pretrained | 228, 244 |
| abstract_inverted_index.soft-label | 94 |
| abstract_inverted_index.thoroughly | 192 |
| abstract_inverted_index.validation | 170 |
| abstract_inverted_index.ImageNet-1k | 169 |
| abstract_inverted_index.PaddleClas. | 252 |
| abstract_inverted_index.difference. | 208 |
| abstract_inverted_index.empirically | 153 |
| abstract_inverted_index.experiments | 232 |
| abstract_inverted_index.extensively | 25 |
| abstract_inverted_index.implemented | 234 |
| abstract_inverted_index.performance | 202 |
| abstract_inverted_index.pre-trained | 9, 42, 75 |
| abstract_inverted_index.concentrated | 5 |
| abstract_inverted_index.distillation | 72, 83, 107, 125, 158, 201 |
| abstract_inverted_index.iterations). | 59 |
| abstract_inverted_index.performance. | 17 |
| abstract_inverted_index.technologies | 22 |
| abstract_inverted_index.PaddlePaddle, | 237 |
| abstract_inverted_index.off-the-shelf | 74 |
| abstract_inverted_index.respectively. | 188 |
| abstract_inverted_index.segmentation, | 221 |
| abstract_inverted_index.significantly | 178, 223 |
| abstract_inverted_index.semi-supervised | 20 |
| abstract_inverted_index.Self-supervision | 18 |
| abstract_inverted_index.MobileNetV3-large | 173 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 13 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |