Biased estimator channels for classical shadows Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1103/physreva.111.l030402
Extracting classical information from quantum systems is of fundamental importance, and classical shadows allow us to extract a large amount of information using relatively few measurements. Conventional shadow estimators are unbiased and thus agree with the true mean in expectation. In this Letter, we consider a biased scheme, intentionally introducing a bias in the expectation value by rescaling the conventional classical-shadow estimators to reduce the error in the finite-sample regime. The approach is straightforward to implement and requires no quantum resources. We analytically prove average-case as well as worst- and best-case scenarios, and rigorously prove that it is, in principle, always worth biasing the estimators. We illustrate our approach in a quantum simulation task of a 12-qubit spin-ring problem and demonstrate how estimating expected values of nonlocal perturbations can be significantly more efficient using our biased scheme.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1103/physreva.111.l030402
- http://link.aps.org/pdf/10.1103/PhysRevA.111.L030402
- OA Status
- hybrid
- Cited By
- 1
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408695651
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408695651Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1103/physreva.111.l030402Digital Object Identifier
- Title
-
Biased estimator channels for classical shadowsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-21Full publication date if available
- Authors
-
Zhenyu Cai, Adrian Chapman, Hamza Jnane, Bálint KoczorList of authors in order
- Landing page
-
https://doi.org/10.1103/physreva.111.l030402Publisher landing page
- PDF URL
-
https://link.aps.org/pdf/10.1103/PhysRevA.111.L030402Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.aps.org/pdf/10.1103/PhysRevA.111.L030402Direct OA link when available
- Concepts
-
Estimator, Mathematics, Computer science, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408695651 |
|---|---|
| doi | https://doi.org/10.1103/physreva.111.l030402 |
| ids.doi | https://doi.org/10.1103/physreva.111.l030402 |
| ids.openalex | https://openalex.org/W4408695651 |
| fwci | 5.01839543 |
| type | article |
| title | Biased estimator channels for classical shadows |
| awards[0].id | https://openalex.org/G2909309003 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/W032635/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[1].id | https://openalex.org/G6341855992 |
| awards[1].funder_id | https://openalex.org/F4320334627 |
| awards[1].display_name | |
| awards[1].funder_award_id | MR/Y015843/1 |
| awards[1].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[2].id | https://openalex.org/G6174183273 |
| awards[2].funder_id | https://openalex.org/F4320334627 |
| awards[2].display_name | |
| awards[2].funder_award_id | EP/T001062/1 |
| awards[2].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | 3 |
| biblio.volume | 111 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12002 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9865000247955322 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computability, Logic, AI Algorithms |
| topics[1].id | https://openalex.org/T10682 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9746000170707703 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Quantum Computing Algorithms and Architecture |
| topics[2].id | https://openalex.org/T12101 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9664999842643738 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Advanced Bandit Algorithms Research |
| funders[0].id | https://openalex.org/F4320320290 |
| funders[0].ror | https://ror.org/052gg0110 |
| funders[0].display_name | University of Oxford |
| funders[1].id | https://openalex.org/F4320334627 |
| funders[1].ror | https://ror.org/0439y7842 |
| funders[1].display_name | Engineering and Physical Sciences Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5370937585830688 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4334172010421753 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.36514997482299805 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.31452614068984985 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.5370937585830688 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.4334172010421753 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.36514997482299805 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.31452614068984985 |
| keywords[3].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1103/physreva.111.l030402 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210182288 |
| locations[0].source.issn | 2469-9926, 2469-9934, 2469-9942 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2469-9926 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Physical review. A/Physical review, A |
| locations[0].source.host_organization | https://openalex.org/P4310320261 |
| locations[0].source.host_organization_name | American Physical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320261 |
| locations[0].source.host_organization_lineage_names | American Physical Society |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://link.aps.org/pdf/10.1103/PhysRevA.111.L030402 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Physical Review A |
| locations[0].landing_page_url | https://doi.org/10.1103/physreva.111.l030402 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5043339252 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5659-4301 |
| authorships[0].author.display_name | Zhenyu Cai |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Oxford |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210092701 |
| authorships[0].affiliations[1].raw_affiliation_string | Quantum Motion |
| authorships[0].institutions[0].id | https://openalex.org/I4210092701 |
| authorships[0].institutions[0].ror | https://ror.org/00jvxk918 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210092701 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Quantum Motion Technologies (United Kingdom) |
| authorships[0].institutions[1].id | https://openalex.org/I40120149 |
| authorships[0].institutions[1].ror | https://ror.org/052gg0110 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I40120149 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | University of Oxford |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhenyu Cai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Quantum Motion, University of Oxford |
| authorships[1].author.id | https://openalex.org/A5081141125 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2303-7589 |
| authorships[1].author.display_name | Adrian Chapman |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Oxford |
| authorships[1].institutions[0].id | https://openalex.org/I40120149 |
| authorships[1].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Oxford |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Adrian Chapman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Oxford |
| authorships[2].author.id | https://openalex.org/A5079574569 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0713-3354 |
| authorships[2].author.display_name | Hamza Jnane |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210092701 |
| authorships[2].affiliations[0].raw_affiliation_string | Quantum Motion |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I40120149 |
| authorships[2].affiliations[1].raw_affiliation_string | University of Oxford |
| authorships[2].institutions[0].id | https://openalex.org/I4210092701 |
| authorships[2].institutions[0].ror | https://ror.org/00jvxk918 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210092701 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Quantum Motion Technologies (United Kingdom) |
| authorships[2].institutions[1].id | https://openalex.org/I40120149 |
| authorships[2].institutions[1].ror | https://ror.org/052gg0110 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I40120149 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | University of Oxford |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hamza Jnane |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Quantum Motion, University of Oxford |
| authorships[3].author.id | https://openalex.org/A5081798961 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4319-6870 |
| authorships[3].author.display_name | Bálint Koczor |
| authorships[3].countries | GB, SK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I40120149, https://openalex.org/I4210120676 |
| authorships[3].affiliations[0].raw_affiliation_string | Mathematical Institute, University of Oxford |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I40120149 |
| authorships[3].affiliations[1].raw_affiliation_string | University of Oxford |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I4210092701 |
| authorships[3].affiliations[2].raw_affiliation_string | Quantum Motion |
| authorships[3].institutions[0].id | https://openalex.org/I4210092701 |
| authorships[3].institutions[0].ror | https://ror.org/00jvxk918 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210092701 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Quantum Motion Technologies (United Kingdom) |
| authorships[3].institutions[1].id | https://openalex.org/I40120149 |
| authorships[3].institutions[1].ror | https://ror.org/052gg0110 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I40120149 |
| authorships[3].institutions[1].country_code | GB |
| authorships[3].institutions[1].display_name | University of Oxford |
| authorships[3].institutions[2].id | https://openalex.org/I4210120676 |
| authorships[3].institutions[2].ror | https://ror.org/02fhy7464 |
| authorships[3].institutions[2].type | facility |
| authorships[3].institutions[2].lineage | https://openalex.org/I207624831, https://openalex.org/I4210120676 |
| authorships[3].institutions[2].country_code | SK |
| authorships[3].institutions[2].display_name | Mathematical Institute of the Slovak Academy of Sciences |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Bálint Koczor |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Mathematical Institute, University of Oxford, Quantum Motion, University of Oxford |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://link.aps.org/pdf/10.1103/PhysRevA.111.L030402 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Biased estimator channels for classical shadows |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12002 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9865000247955322 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computability, Logic, AI Algorithms |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1103/physreva.111.l030402 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210182288 |
| best_oa_location.source.issn | 2469-9926, 2469-9934, 2469-9942 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2469-9926 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Physical review. A/Physical review, A |
| best_oa_location.source.host_organization | https://openalex.org/P4310320261 |
| best_oa_location.source.host_organization_name | American Physical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320261 |
| best_oa_location.source.host_organization_lineage_names | American Physical Society |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://link.aps.org/pdf/10.1103/PhysRevA.111.L030402 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Physical Review A |
| best_oa_location.landing_page_url | https://doi.org/10.1103/physreva.111.l030402 |
| primary_location.id | doi:10.1103/physreva.111.l030402 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210182288 |
| primary_location.source.issn | 2469-9926, 2469-9934, 2469-9942 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2469-9926 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Physical review. A/Physical review, A |
| primary_location.source.host_organization | https://openalex.org/P4310320261 |
| primary_location.source.host_organization_name | American Physical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320261 |
| primary_location.source.host_organization_lineage_names | American Physical Society |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://link.aps.org/pdf/10.1103/PhysRevA.111.L030402 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Physical Review A |
| primary_location.landing_page_url | https://doi.org/10.1103/physreva.111.l030402 |
| publication_date | 2025-03-21 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2982169647, https://openalex.org/W3173899054, https://openalex.org/W3176603110, https://openalex.org/W4389373471, https://openalex.org/W4380627387, https://openalex.org/W4321610982, https://openalex.org/W2044090207, https://openalex.org/W3011222909, https://openalex.org/W4310576936, https://openalex.org/W3006823398, https://openalex.org/W3137962867, https://openalex.org/W3097716063, https://openalex.org/W4388087330, https://openalex.org/W3099477842, https://openalex.org/W4309830378, https://openalex.org/W4379056593, https://openalex.org/W4390660290, https://openalex.org/W3107600208, https://openalex.org/W3037811760, https://openalex.org/W4406382943, https://openalex.org/W4402001249, https://openalex.org/W2087138716, https://openalex.org/W2903221501, https://openalex.org/W3082562307, https://openalex.org/W4220747861, https://openalex.org/W4311473689, https://openalex.org/W4310135775, https://openalex.org/W4408505089, https://openalex.org/W4389672456, https://openalex.org/W4391679242, https://openalex.org/W4399457826, https://openalex.org/W2789114820, https://openalex.org/W2996191276, https://openalex.org/W1863908278, https://openalex.org/W3103870741, https://openalex.org/W3104327272, https://openalex.org/W3104413728 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 17, 45, 50, 110, 115 |
| abstract_inverted_index.In | 40 |
| abstract_inverted_index.We | 81, 105 |
| abstract_inverted_index.as | 85, 87 |
| abstract_inverted_index.be | 129 |
| abstract_inverted_index.by | 56 |
| abstract_inverted_index.in | 38, 52, 66, 98, 109 |
| abstract_inverted_index.is | 6, 72 |
| abstract_inverted_index.it | 96 |
| abstract_inverted_index.no | 78 |
| abstract_inverted_index.of | 7, 20, 114, 125 |
| abstract_inverted_index.to | 15, 62, 74 |
| abstract_inverted_index.us | 14 |
| abstract_inverted_index.we | 43 |
| abstract_inverted_index.The | 70 |
| abstract_inverted_index.and | 10, 31, 76, 89, 92, 119 |
| abstract_inverted_index.are | 29 |
| abstract_inverted_index.can | 128 |
| abstract_inverted_index.few | 24 |
| abstract_inverted_index.how | 121 |
| abstract_inverted_index.is, | 97 |
| abstract_inverted_index.our | 107, 134 |
| abstract_inverted_index.the | 35, 53, 58, 64, 67, 103 |
| abstract_inverted_index.bias | 51 |
| abstract_inverted_index.from | 3 |
| abstract_inverted_index.mean | 37 |
| abstract_inverted_index.more | 131 |
| abstract_inverted_index.task | 113 |
| abstract_inverted_index.that | 95 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.thus | 32 |
| abstract_inverted_index.true | 36 |
| abstract_inverted_index.well | 86 |
| abstract_inverted_index.with | 34 |
| abstract_inverted_index.agree | 33 |
| abstract_inverted_index.allow | 13 |
| abstract_inverted_index.error | 65 |
| abstract_inverted_index.large | 18 |
| abstract_inverted_index.prove | 83, 94 |
| abstract_inverted_index.using | 22, 133 |
| abstract_inverted_index.value | 55 |
| abstract_inverted_index.worth | 101 |
| abstract_inverted_index.always | 100 |
| abstract_inverted_index.amount | 19 |
| abstract_inverted_index.biased | 46, 135 |
| abstract_inverted_index.reduce | 63 |
| abstract_inverted_index.shadow | 27 |
| abstract_inverted_index.values | 124 |
| abstract_inverted_index.worst- | 88 |
| abstract_inverted_index.Letter, | 42 |
| abstract_inverted_index.biasing | 102 |
| abstract_inverted_index.extract | 16 |
| abstract_inverted_index.problem | 118 |
| abstract_inverted_index.quantum | 4, 79, 111 |
| abstract_inverted_index.regime. | 69 |
| abstract_inverted_index.scheme, | 47 |
| abstract_inverted_index.scheme. | 136 |
| abstract_inverted_index.shadows | 12 |
| abstract_inverted_index.systems | 5 |
| abstract_inverted_index.12-qubit | 116 |
| abstract_inverted_index.approach | 71, 108 |
| abstract_inverted_index.consider | 44 |
| abstract_inverted_index.expected | 123 |
| abstract_inverted_index.nonlocal | 126 |
| abstract_inverted_index.requires | 77 |
| abstract_inverted_index.unbiased | 30 |
| abstract_inverted_index.best-case | 90 |
| abstract_inverted_index.classical | 1, 11 |
| abstract_inverted_index.efficient | 132 |
| abstract_inverted_index.implement | 75 |
| abstract_inverted_index.rescaling | 57 |
| abstract_inverted_index.spin-ring | 117 |
| abstract_inverted_index.Extracting | 0 |
| abstract_inverted_index.estimating | 122 |
| abstract_inverted_index.estimators | 28, 61 |
| abstract_inverted_index.illustrate | 106 |
| abstract_inverted_index.principle, | 99 |
| abstract_inverted_index.relatively | 23 |
| abstract_inverted_index.resources. | 80 |
| abstract_inverted_index.rigorously | 93 |
| abstract_inverted_index.scenarios, | 91 |
| abstract_inverted_index.simulation | 112 |
| abstract_inverted_index.demonstrate | 120 |
| abstract_inverted_index.estimators. | 104 |
| abstract_inverted_index.expectation | 54 |
| abstract_inverted_index.fundamental | 8 |
| abstract_inverted_index.importance, | 9 |
| abstract_inverted_index.information | 2, 21 |
| abstract_inverted_index.introducing | 49 |
| abstract_inverted_index.Conventional | 26 |
| abstract_inverted_index.analytically | 82 |
| abstract_inverted_index.average-case | 84 |
| abstract_inverted_index.conventional | 59 |
| abstract_inverted_index.expectation. | 39 |
| abstract_inverted_index.finite-sample | 68 |
| abstract_inverted_index.intentionally | 48 |
| abstract_inverted_index.measurements. | 25 |
| abstract_inverted_index.perturbations | 127 |
| abstract_inverted_index.significantly | 130 |
| abstract_inverted_index.straightforward | 73 |
| abstract_inverted_index.classical-shadow | 60 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.8679661 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |