Bidirectional Diffusion Bridge Models Article Swipe
Duc Kieu
,
Kien Do
,
Toan Nguyen
,
Dang Nguyen
,
Thin Nguyen
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1145/3711896.3736858
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1145/3711896.3736858
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3711896.3736858
- OA Status
- gold
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412825741
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412825741Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3711896.3736858Digital Object Identifier
- Title
-
Bidirectional Diffusion Bridge ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-01Full publication date if available
- Authors
-
Duc Kieu, Kien Do, Toan Nguyen, Dang Nguyen, Thin NguyenList of authors in order
- Landing page
-
https://doi.org/10.1145/3711896.3736858Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3711896.3736858Direct OA link when available
- Concepts
-
Bridge (graph theory), Diffusion, Computer science, Physics, Thermodynamics, Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412825741 |
|---|---|
| doi | https://doi.org/10.1145/3711896.3736858 |
| ids.doi | https://doi.org/10.1145/3711896.3736858 |
| ids.openalex | https://openalex.org/W4412825741 |
| fwci | 0.0 |
| type | article |
| title | Bidirectional Diffusion Bridge Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1148 |
| biblio.first_page | 1139 |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9962999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T10928 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9815999865531921 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Probabilistic and Robust Engineering Design |
| topics[2].id | https://openalex.org/T11751 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9775000214576721 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Lattice Boltzmann Simulation Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C100776233 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6203458309173584 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2532492 |
| concepts[0].display_name | Bridge (graph theory) |
| concepts[1].id | https://openalex.org/C69357855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5557114481925964 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[1].display_name | Diffusion |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.510303258895874 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C121332964 |
| concepts[3].level | 0 |
| concepts[3].score | 0.14523950219154358 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[3].display_name | Physics |
| concepts[4].id | https://openalex.org/C97355855 |
| concepts[4].level | 1 |
| concepts[4].score | 0.05698662996292114 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[4].display_name | Thermodynamics |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C126322002 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[6].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/bridge |
| keywords[0].score | 0.6203458309173584 |
| keywords[0].display_name | Bridge (graph theory) |
| keywords[1].id | https://openalex.org/keywords/diffusion |
| keywords[1].score | 0.5557114481925964 |
| keywords[1].display_name | Diffusion |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.510303258895874 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/physics |
| keywords[3].score | 0.14523950219154358 |
| keywords[3].display_name | Physics |
| keywords[4].id | https://openalex.org/keywords/thermodynamics |
| keywords[4].score | 0.05698662996292114 |
| keywords[4].display_name | Thermodynamics |
| language | en |
| locations[0].id | doi:10.1145/3711896.3736858 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2 |
| locations[0].landing_page_url | https://doi.org/10.1145/3711896.3736858 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5028613041 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-4359-3383 |
| authorships[0].author.display_name | Duc Kieu |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[0].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Initiative, Deakin University, Geelong, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I149704539 |
| authorships[0].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Deakin University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Duc Kieu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Applied Artificial Intelligence Initiative, Deakin University, Geelong, Australia |
| authorships[1].author.id | https://openalex.org/A5001806269 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0119-122X |
| authorships[1].author.display_name | Kien Do |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[1].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Initiative, Deakin University, Geelong, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I149704539 |
| authorships[1].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Deakin University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kien Do |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Applied Artificial Intelligence Initiative, Deakin University, Geelong, Australia |
| authorships[2].author.id | https://openalex.org/A5102874067 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2734-0622 |
| authorships[2].author.display_name | Toan Nguyen |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[2].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Initiative, Deakin University, Geelong, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I149704539 |
| authorships[2].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Deakin University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Toan Nguyen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Applied Artificial Intelligence Initiative, Deakin University, Geelong, Australia |
| authorships[3].author.id | https://openalex.org/A5089725610 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0401-988X |
| authorships[3].author.display_name | Dang Nguyen |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[3].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Initiative, Deakin University, Geelong, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I149704539 |
| authorships[3].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Deakin University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dang Nguyen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Applied Artificial Intelligence Initiative, Deakin University, Geelong, Australia |
| authorships[4].author.id | https://openalex.org/A5100705489 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3467-8963 |
| authorships[4].author.display_name | Thin Nguyen |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[4].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Initiative, Deakin University, Waurn Ponds, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I149704539 |
| authorships[4].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Deakin University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Thin Nguyen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Applied Artificial Intelligence Initiative, Deakin University, Waurn Ponds, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3711896.3736858 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bidirectional Diffusion Bridge Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9962999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W1501776718, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2615136228, https://openalex.org/W2376932109 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3711896.3736858 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2 |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3711896.3736858 |
| primary_location.id | doi:10.1145/3711896.3736858 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2 |
| primary_location.landing_page_url | https://doi.org/10.1145/3711896.3736858 |
| publication_date | 2025-08-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3167139504, https://openalex.org/W3191805365, https://openalex.org/W6795288823, https://openalex.org/W7024341378, https://openalex.org/W6779823529, https://openalex.org/W1505878979, https://openalex.org/W2963073614, https://openalex.org/W2033660931, https://openalex.org/W6797906067, https://openalex.org/W2963170010, https://openalex.org/W4386076617, https://openalex.org/W6601658864, https://openalex.org/W2475158750, https://openalex.org/W4362598759, https://openalex.org/W4226317937, https://openalex.org/W6804122398, https://openalex.org/W6718379498, https://openalex.org/W4321649826, https://openalex.org/W6602344735, https://openalex.org/W3172297936, https://openalex.org/W2783879794, https://openalex.org/W4285598072, https://openalex.org/W4287027613, https://openalex.org/W3177150392, https://openalex.org/W1577627982, https://openalex.org/W4212863985, https://openalex.org/W2914304175, https://openalex.org/W2963373786, https://openalex.org/W3162926177, https://openalex.org/W3004970274, https://openalex.org/W2962785568, https://openalex.org/W4306676681, https://openalex.org/W3036167779 |
| referenced_works_count | 33 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.25970913 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |