Big Data Analysis of Massive PMU Datasets: A Data Platform Perspective Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/isgt49243.2021.9372203
The discovery of `event signatures' and useful insights from very large historical Phasor Measurement Unit (PMU) datasets is predicated on offline Big Data analysis approaches that rely on the generation of predictive features on a massive scale. This paper presents lessons learned from a data platform perspective towards reducing barriers to adoption of Big Data analytics against a real dataset of almost half a trillion data points drawn from over 400 PMUs distributed across the North American power grid. We demonstrate software abstractions and targeted performance optimizations that can lead to significant productivity gains for power systems researchers seeking to perform offline exploratory temporal analysis and modeling tasks, with a focus on feature generation. We describe how our optimized approach goes beyond a naive application of mainstream Big Data technologies, enabling feature generation tasks, that previously took days or even weeks, to now be completed in just a few hours.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/isgt49243.2021.9372203
- OA Status
- green
- Cited By
- 6
- References
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3139076307
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3139076307Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/isgt49243.2021.9372203Digital Object Identifier
- Title
-
Big Data Analysis of Massive PMU Datasets: A Data Platform PerspectiveWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-16Full publication date if available
- Authors
-
Vijay S. Kumar, Tianyi Wang, Kareem S. Aggour, Pengyuan Wang, Philip J. Hart, Weizhong YanList of authors in order
- Landing page
-
https://doi.org/10.1109/isgt49243.2021.9372203Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1971198Direct OA link when available
- Concepts
-
Big data, Computer science, Data science, Phasor measurement unit, Analytics, Perspective (graphical), Software, Data modeling, Data analysis, Data mining, Power (physics), Electric power system, Database, Artificial intelligence, Phasor, Operating system, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 3, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
3Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3139076307 |
|---|---|
| doi | https://doi.org/10.1109/isgt49243.2021.9372203 |
| ids.doi | https://doi.org/10.1109/isgt49243.2021.9372203 |
| ids.mag | 3139076307 |
| ids.openalex | https://openalex.org/W3139076307 |
| fwci | 0.84662145 |
| type | article |
| title | Big Data Analysis of Massive PMU Datasets: A Data Platform Perspective |
| awards[0].id | https://openalex.org/G3352832746 |
| awards[0].funder_id | https://openalex.org/F4320306084 |
| awards[0].display_name | |
| awards[0].funder_award_id | DE-OE0000915 |
| awards[0].funder_display_name | U.S. Department of Energy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 5 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T13650 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9919999837875366 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Computational Physics and Python Applications |
| topics[1].id | https://openalex.org/T11801 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9793000221252441 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Reservoir Engineering and Simulation Methods |
| topics[2].id | https://openalex.org/T10715 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9624999761581421 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Distributed and Parallel Computing Systems |
| funders[0].id | https://openalex.org/F4320306084 |
| funders[0].ror | https://ror.org/01bj3aw27 |
| funders[0].display_name | U.S. Department of Energy |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C75684735 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8359888792037964 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[0].display_name | Big data |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7838892936706543 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7146025896072388 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C2778229166 |
| concepts[3].level | 5 |
| concepts[3].score | 0.565334141254425 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8290 |
| concepts[3].display_name | Phasor measurement unit |
| concepts[4].id | https://openalex.org/C79158427 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5554192066192627 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[4].display_name | Analytics |
| concepts[5].id | https://openalex.org/C12713177 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47222426533699036 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[5].display_name | Perspective (graphical) |
| concepts[6].id | https://openalex.org/C2777904410 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4294726252555847 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[6].display_name | Software |
| concepts[7].id | https://openalex.org/C67186912 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42919617891311646 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[7].display_name | Data modeling |
| concepts[8].id | https://openalex.org/C175801342 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41576170921325684 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1988917 |
| concepts[8].display_name | Data analysis |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40659090876579285 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C163258240 |
| concepts[10].level | 2 |
| concepts[10].score | 0.24184873700141907 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[10].display_name | Power (physics) |
| concepts[11].id | https://openalex.org/C89227174 |
| concepts[11].level | 3 |
| concepts[11].score | 0.24180975556373596 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2388981 |
| concepts[11].display_name | Electric power system |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.20805507898330688 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.16025859117507935 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C176605952 |
| concepts[14].level | 4 |
| concepts[14].score | 0.10644352436065674 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q827674 |
| concepts[14].display_name | Phasor |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09622421860694885 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/big-data |
| keywords[0].score | 0.8359888792037964 |
| keywords[0].display_name | Big data |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7838892936706543 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.7146025896072388 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/phasor-measurement-unit |
| keywords[3].score | 0.565334141254425 |
| keywords[3].display_name | Phasor measurement unit |
| keywords[4].id | https://openalex.org/keywords/analytics |
| keywords[4].score | 0.5554192066192627 |
| keywords[4].display_name | Analytics |
| keywords[5].id | https://openalex.org/keywords/perspective |
| keywords[5].score | 0.47222426533699036 |
| keywords[5].display_name | Perspective (graphical) |
| keywords[6].id | https://openalex.org/keywords/software |
| keywords[6].score | 0.4294726252555847 |
| keywords[6].display_name | Software |
| keywords[7].id | https://openalex.org/keywords/data-modeling |
| keywords[7].score | 0.42919617891311646 |
| keywords[7].display_name | Data modeling |
| keywords[8].id | https://openalex.org/keywords/data-analysis |
| keywords[8].score | 0.41576170921325684 |
| keywords[8].display_name | Data analysis |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.40659090876579285 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/power |
| keywords[10].score | 0.24184873700141907 |
| keywords[10].display_name | Power (physics) |
| keywords[11].id | https://openalex.org/keywords/electric-power-system |
| keywords[11].score | 0.24180975556373596 |
| keywords[11].display_name | Electric power system |
| keywords[12].id | https://openalex.org/keywords/database |
| keywords[12].score | 0.20805507898330688 |
| keywords[12].display_name | Database |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.16025859117507935 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/phasor |
| keywords[14].score | 0.10644352436065674 |
| keywords[14].display_name | Phasor |
| keywords[15].id | https://openalex.org/keywords/operating-system |
| keywords[15].score | 0.09622421860694885 |
| keywords[15].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.1109/isgt49243.2021.9372203 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) |
| locations[0].landing_page_url | https://doi.org/10.1109/isgt49243.2021.9372203 |
| locations[1].id | pmh:oai:osti.gov:1971198 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/1971198 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101673411 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2234-1546 |
| authorships[0].author.display_name | Vijay S. Kumar |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[0].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[0].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | GE Global Research (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vijay S. Kumar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | GE Research, Niskayuna, NY, USA |
| authorships[1].author.id | https://openalex.org/A5112225428 |
| authorships[1].author.orcid | https://orcid.org/0009-0007-1844-8582 |
| authorships[1].author.display_name | Tianyi Wang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[1].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[1].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | GE Global Research (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tianyi Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | GE Research, Niskayuna, NY, USA |
| authorships[2].author.id | https://openalex.org/A5050284653 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7467-3836 |
| authorships[2].author.display_name | Kareem S. Aggour |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[2].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[2].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | GE Global Research (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kareem S. Aggour |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | GE Research, Niskayuna, NY, USA |
| authorships[3].author.id | https://openalex.org/A5100714810 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6444-1257 |
| authorships[3].author.display_name | Pengyuan Wang |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[3].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[3].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | GE Global Research (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pengyuan Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | GE Research, Niskayuna, NY, USA |
| authorships[4].author.id | https://openalex.org/A5040721524 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6246-7421 |
| authorships[4].author.display_name | Philip J. Hart |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[4].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY, USA |
| authorships[4].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[4].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | GE Global Research (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Philip J. Hart |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | GE Research, Niskayuna, NY, USA |
| authorships[5].author.id | https://openalex.org/A5073342710 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7916-8476 |
| authorships[5].author.display_name | Weizhong Yan |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[5].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY, USA |
| authorships[5].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[5].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | GE Global Research (United States) |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Weizhong Yan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | GE Research, Niskayuna, NY, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1971198 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Big Data Analysis of Massive PMU Datasets: A Data Platform Perspective |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13650 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9919999837875366 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Computational Physics and Python Applications |
| related_works | https://openalex.org/W2625749796, https://openalex.org/W4226266853, https://openalex.org/W4245701730, https://openalex.org/W4210252074, https://openalex.org/W2511794504, https://openalex.org/W3092201768, https://openalex.org/W2911648135, https://openalex.org/W2886451445, https://openalex.org/W3108449883, https://openalex.org/W2794907032 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:1971198 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1971198 |
| primary_location.id | doi:10.1109/isgt49243.2021.9372203 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) |
| primary_location.landing_page_url | https://doi.org/10.1109/isgt49243.2021.9372203 |
| publication_date | 2021-02-16 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2964577307, https://openalex.org/W2945562476, https://openalex.org/W2333073311 |
| referenced_works_count | 3 |
| abstract_inverted_index.a | 34, 43, 57, 63, 109, 122, 147 |
| abstract_inverted_index.We | 79, 114 |
| abstract_inverted_index.be | 143 |
| abstract_inverted_index.in | 145 |
| abstract_inverted_index.is | 17 |
| abstract_inverted_index.of | 2, 30, 52, 60, 125 |
| abstract_inverted_index.on | 19, 27, 33, 111 |
| abstract_inverted_index.or | 138 |
| abstract_inverted_index.to | 50, 90, 99, 141 |
| abstract_inverted_index.400 | 70 |
| abstract_inverted_index.Big | 21, 53, 127 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 5, 83, 105 |
| abstract_inverted_index.can | 88 |
| abstract_inverted_index.few | 148 |
| abstract_inverted_index.for | 94 |
| abstract_inverted_index.how | 116 |
| abstract_inverted_index.now | 142 |
| abstract_inverted_index.our | 117 |
| abstract_inverted_index.the | 28, 74 |
| abstract_inverted_index.Data | 22, 54, 128 |
| abstract_inverted_index.PMUs | 71 |
| abstract_inverted_index.This | 37 |
| abstract_inverted_index.Unit | 14 |
| abstract_inverted_index.data | 44, 65 |
| abstract_inverted_index.days | 137 |
| abstract_inverted_index.even | 139 |
| abstract_inverted_index.from | 8, 42, 68 |
| abstract_inverted_index.goes | 120 |
| abstract_inverted_index.half | 62 |
| abstract_inverted_index.just | 146 |
| abstract_inverted_index.lead | 89 |
| abstract_inverted_index.over | 69 |
| abstract_inverted_index.real | 58 |
| abstract_inverted_index.rely | 26 |
| abstract_inverted_index.that | 25, 87, 134 |
| abstract_inverted_index.took | 136 |
| abstract_inverted_index.very | 9 |
| abstract_inverted_index.with | 108 |
| abstract_inverted_index.(PMU) | 15 |
| abstract_inverted_index.North | 75 |
| abstract_inverted_index.drawn | 67 |
| abstract_inverted_index.focus | 110 |
| abstract_inverted_index.gains | 93 |
| abstract_inverted_index.grid. | 78 |
| abstract_inverted_index.large | 10 |
| abstract_inverted_index.naive | 123 |
| abstract_inverted_index.paper | 38 |
| abstract_inverted_index.power | 77, 95 |
| abstract_inverted_index.Phasor | 12 |
| abstract_inverted_index.`event | 3 |
| abstract_inverted_index.across | 73 |
| abstract_inverted_index.almost | 61 |
| abstract_inverted_index.beyond | 121 |
| abstract_inverted_index.hours. | 149 |
| abstract_inverted_index.points | 66 |
| abstract_inverted_index.scale. | 36 |
| abstract_inverted_index.tasks, | 107, 133 |
| abstract_inverted_index.useful | 6 |
| abstract_inverted_index.weeks, | 140 |
| abstract_inverted_index.against | 56 |
| abstract_inverted_index.dataset | 59 |
| abstract_inverted_index.feature | 112, 131 |
| abstract_inverted_index.learned | 41 |
| abstract_inverted_index.lessons | 40 |
| abstract_inverted_index.massive | 35 |
| abstract_inverted_index.offline | 20, 101 |
| abstract_inverted_index.perform | 100 |
| abstract_inverted_index.seeking | 98 |
| abstract_inverted_index.systems | 96 |
| abstract_inverted_index.towards | 47 |
| abstract_inverted_index.American | 76 |
| abstract_inverted_index.adoption | 51 |
| abstract_inverted_index.analysis | 23, 104 |
| abstract_inverted_index.approach | 119 |
| abstract_inverted_index.barriers | 49 |
| abstract_inverted_index.datasets | 16 |
| abstract_inverted_index.describe | 115 |
| abstract_inverted_index.enabling | 130 |
| abstract_inverted_index.features | 32 |
| abstract_inverted_index.insights | 7 |
| abstract_inverted_index.modeling | 106 |
| abstract_inverted_index.platform | 45 |
| abstract_inverted_index.presents | 39 |
| abstract_inverted_index.reducing | 48 |
| abstract_inverted_index.software | 81 |
| abstract_inverted_index.targeted | 84 |
| abstract_inverted_index.temporal | 103 |
| abstract_inverted_index.trillion | 64 |
| abstract_inverted_index.analytics | 55 |
| abstract_inverted_index.completed | 144 |
| abstract_inverted_index.discovery | 1 |
| abstract_inverted_index.optimized | 118 |
| abstract_inverted_index.approaches | 24 |
| abstract_inverted_index.generation | 29, 132 |
| abstract_inverted_index.historical | 11 |
| abstract_inverted_index.mainstream | 126 |
| abstract_inverted_index.predicated | 18 |
| abstract_inverted_index.predictive | 31 |
| abstract_inverted_index.previously | 135 |
| abstract_inverted_index.Measurement | 13 |
| abstract_inverted_index.application | 124 |
| abstract_inverted_index.demonstrate | 80 |
| abstract_inverted_index.distributed | 72 |
| abstract_inverted_index.exploratory | 102 |
| abstract_inverted_index.generation. | 113 |
| abstract_inverted_index.performance | 85 |
| abstract_inverted_index.perspective | 46 |
| abstract_inverted_index.researchers | 97 |
| abstract_inverted_index.signatures' | 4 |
| abstract_inverted_index.significant | 91 |
| abstract_inverted_index.abstractions | 82 |
| abstract_inverted_index.productivity | 92 |
| abstract_inverted_index.optimizations | 86 |
| abstract_inverted_index.technologies, | 129 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.78141684 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |