Big Data Analytics in Online Structural Health Monitoring Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.36001/ijphm.2016.v7i4.2462
This manuscript explores the application of big data analytics in online structural health monitoring. As smart sensor technology is making progress and low cost online monitoring is increasingly possible, large quantities of highly heterogeneous data can be acquired during the monitoring, thus exceeding the capacity of traditional data analytics techniques. This paper investigates big data techniques to handle the highvolume data obtained in structural health monitoring. In particular, we investigate the analysis of infrared thermal images for structural damage diagnosis. We explore the MapReduce technique to parallelize the data analytics and efficiently handle the high volume, high velocity and high variety of information. In our study, MapReduce is implemented with the Spark platform, and image processing functions such as uniform filter and Sobel filter are wrapped in the mappers. The methodology is illustrated with concrete slabs, using actual experimental data with induced damage
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.36001/ijphm.2016.v7i4.2462
- https://papers.phmsociety.org/index.php/ijphm/article/download/2462/1425
- OA Status
- diamond
- Cited By
- 12
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3137224102
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3137224102Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36001/ijphm.2016.v7i4.2462Digital Object Identifier
- Title
-
Big Data Analytics in Online Structural Health MonitoringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-13Full publication date if available
- Authors
-
Guowei Cai, Sankaran MahadevanList of authors in order
- Landing page
-
https://doi.org/10.36001/ijphm.2016.v7i4.2462Publisher landing page
- PDF URL
-
https://papers.phmsociety.org/index.php/ijphm/article/download/2462/1425Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://papers.phmsociety.org/index.php/ijphm/article/download/2462/1425Direct OA link when available
- Concepts
-
Big data, Computer science, Analytics, SPARK (programming language), Data science, Data analysis, Volume (thermodynamics), Filter (signal processing), Variety (cybernetics), Software analytics, Data mining, Real-time computing, Artificial intelligence, Computer vision, Software, Programming language, Software construction, Quantum mechanics, Physics, Software systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2022: 1, 2021: 2, 2020: 1, 2019: 3Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3137224102 |
|---|---|
| doi | https://doi.org/10.36001/ijphm.2016.v7i4.2462 |
| ids.doi | https://doi.org/10.36001/ijphm.2016.v7i4.2462 |
| ids.mag | 3137224102 |
| ids.openalex | https://openalex.org/W3137224102 |
| fwci | 0.88483286 |
| type | article |
| title | Big Data Analytics in Online Structural Health Monitoring |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10534 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Structural Health Monitoring Techniques |
| topics[1].id | https://openalex.org/T11856 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9915000200271606 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2211 |
| topics[1].subfield.display_name | Mechanics of Materials |
| topics[1].display_name | Thermography and Photoacoustic Techniques |
| topics[2].id | https://openalex.org/T11606 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9904000163078308 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Infrastructure Maintenance and Monitoring |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C75684735 |
| concepts[0].level | 2 |
| concepts[0].score | 0.80319744348526 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[0].display_name | Big data |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7438905239105225 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C79158427 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7214659452438354 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[2].display_name | Analytics |
| concepts[3].id | https://openalex.org/C2781215313 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6716238856315613 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3493345 |
| concepts[3].display_name | SPARK (programming language) |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5982537269592285 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C175801342 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5966933965682983 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1988917 |
| concepts[5].display_name | Data analysis |
| concepts[6].id | https://openalex.org/C20556612 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5183742642402649 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4469374 |
| concepts[6].display_name | Volume (thermodynamics) |
| concepts[7].id | https://openalex.org/C106131492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4914940595626831 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[7].display_name | Filter (signal processing) |
| concepts[8].id | https://openalex.org/C136197465 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4658070206642151 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[8].display_name | Variety (cybernetics) |
| concepts[9].id | https://openalex.org/C171981572 |
| concepts[9].level | 5 |
| concepts[9].score | 0.4305137097835541 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7554239 |
| concepts[9].display_name | Software analytics |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4213932454586029 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C79403827 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3244345784187317 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[11].display_name | Real-time computing |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1644403338432312 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10917168855667114 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C2777904410 |
| concepts[14].level | 2 |
| concepts[14].score | 0.08492147922515869 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[14].display_name | Software |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C186846655 |
| concepts[16].level | 4 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3398377 |
| concepts[16].display_name | Software construction |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C149091818 |
| concepts[19].level | 3 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2429814 |
| concepts[19].display_name | Software system |
| keywords[0].id | https://openalex.org/keywords/big-data |
| keywords[0].score | 0.80319744348526 |
| keywords[0].display_name | Big data |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7438905239105225 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/analytics |
| keywords[2].score | 0.7214659452438354 |
| keywords[2].display_name | Analytics |
| keywords[3].id | https://openalex.org/keywords/spark |
| keywords[3].score | 0.6716238856315613 |
| keywords[3].display_name | SPARK (programming language) |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.5982537269592285 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/data-analysis |
| keywords[5].score | 0.5966933965682983 |
| keywords[5].display_name | Data analysis |
| keywords[6].id | https://openalex.org/keywords/volume |
| keywords[6].score | 0.5183742642402649 |
| keywords[6].display_name | Volume (thermodynamics) |
| keywords[7].id | https://openalex.org/keywords/filter |
| keywords[7].score | 0.4914940595626831 |
| keywords[7].display_name | Filter (signal processing) |
| keywords[8].id | https://openalex.org/keywords/variety |
| keywords[8].score | 0.4658070206642151 |
| keywords[8].display_name | Variety (cybernetics) |
| keywords[9].id | https://openalex.org/keywords/software-analytics |
| keywords[9].score | 0.4305137097835541 |
| keywords[9].display_name | Software analytics |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.4213932454586029 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/real-time-computing |
| keywords[11].score | 0.3244345784187317 |
| keywords[11].display_name | Real-time computing |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.1644403338432312 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.10917168855667114 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/software |
| keywords[14].score | 0.08492147922515869 |
| keywords[14].display_name | Software |
| language | en |
| locations[0].id | doi:10.36001/ijphm.2016.v7i4.2462 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210188782 |
| locations[0].source.issn | 2153-2648 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2153-2648 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Prognostics and Health Management |
| locations[0].source.host_organization | https://openalex.org/P4310316674 |
| locations[0].source.host_organization_name | The Prognostics and Health Management Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310316674 |
| locations[0].source.host_organization_lineage_names | The Prognostics and Health Management Society |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://papers.phmsociety.org/index.php/ijphm/article/download/2462/1425 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Prognostics and Health Management |
| locations[0].landing_page_url | https://doi.org/10.36001/ijphm.2016.v7i4.2462 |
| locations[1].id | pmh:oai:doaj.org/article:50bab5dd96024204a0580895dbf9b32e |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Prognostics and Health Management, Vol 7, Iss 4 (2016) |
| locations[1].landing_page_url | https://doaj.org/article/50bab5dd96024204a0580895dbf9b32e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101639234 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Guowei Cai |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[0].affiliations[0].raw_affiliation_string | Vanderbilt University, Nashville, TN, 37235, United States |
| authorships[0].institutions[0].id | https://openalex.org/I200719446 |
| authorships[0].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Vanderbilt University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guowei Cai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Vanderbilt University, Nashville, TN, 37235, United States |
| authorships[1].author.id | https://openalex.org/A5089894989 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1969-2388 |
| authorships[1].author.display_name | Sankaran Mahadevan |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[1].affiliations[0].raw_affiliation_string | Vanderbilt University, Nashville, TN, 37235, United States |
| authorships[1].institutions[0].id | https://openalex.org/I200719446 |
| authorships[1].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Vanderbilt University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Sankaran Mahadevan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Vanderbilt University, Nashville, TN, 37235, United States |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://papers.phmsociety.org/index.php/ijphm/article/download/2462/1425 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Big Data Analytics in Online Structural Health Monitoring |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10534 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Structural Health Monitoring Techniques |
| related_works | https://openalex.org/W2543688022, https://openalex.org/W4226266853, https://openalex.org/W2610964225, https://openalex.org/W2413477332, https://openalex.org/W4210252074, https://openalex.org/W4390577565, https://openalex.org/W3033964479, https://openalex.org/W3092201768, https://openalex.org/W4205750827, https://openalex.org/W2945314407 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2017 |
| counts_by_year[5].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.36001/ijphm.2016.v7i4.2462 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210188782 |
| best_oa_location.source.issn | 2153-2648 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2153-2648 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Prognostics and Health Management |
| best_oa_location.source.host_organization | https://openalex.org/P4310316674 |
| best_oa_location.source.host_organization_name | The Prognostics and Health Management Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310316674 |
| best_oa_location.source.host_organization_lineage_names | The Prognostics and Health Management Society |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://papers.phmsociety.org/index.php/ijphm/article/download/2462/1425 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Prognostics and Health Management |
| best_oa_location.landing_page_url | https://doi.org/10.36001/ijphm.2016.v7i4.2462 |
| primary_location.id | doi:10.36001/ijphm.2016.v7i4.2462 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210188782 |
| primary_location.source.issn | 2153-2648 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2153-2648 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Prognostics and Health Management |
| primary_location.source.host_organization | https://openalex.org/P4310316674 |
| primary_location.source.host_organization_name | The Prognostics and Health Management Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310316674 |
| primary_location.source.host_organization_lineage_names | The Prognostics and Health Management Society |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://papers.phmsociety.org/index.php/ijphm/article/download/2462/1425 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Prognostics and Health Management |
| primary_location.landing_page_url | https://doi.org/10.36001/ijphm.2016.v7i4.2462 |
| publication_date | 2020-11-13 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2039987051, https://openalex.org/W2107700797, https://openalex.org/W1509559802, https://openalex.org/W2000619958, https://openalex.org/W2126337883, https://openalex.org/W2115042017, https://openalex.org/W2092944036, https://openalex.org/W2151956385, https://openalex.org/W2109954332, https://openalex.org/W6664415416, https://openalex.org/W2106161392, https://openalex.org/W3161535009, https://openalex.org/W645326816, https://openalex.org/W2019078931, https://openalex.org/W2035964189, https://openalex.org/W2152734207, https://openalex.org/W1967765898, https://openalex.org/W2088635957, https://openalex.org/W4234427037, https://openalex.org/W2088886701, https://openalex.org/W1578741920, https://openalex.org/W4234695176, https://openalex.org/W2055159357, https://openalex.org/W2173213060, https://openalex.org/W2035079021 |
| referenced_works_count | 25 |
| abstract_inverted_index.As | 14 |
| abstract_inverted_index.In | 66, 103 |
| abstract_inverted_index.We | 80 |
| abstract_inverted_index.as | 118 |
| abstract_inverted_index.be | 36 |
| abstract_inverted_index.in | 9, 62, 126 |
| abstract_inverted_index.is | 18, 26, 107, 131 |
| abstract_inverted_index.of | 5, 31, 45, 72, 101 |
| abstract_inverted_index.to | 56, 85 |
| abstract_inverted_index.we | 68 |
| abstract_inverted_index.The | 129 |
| abstract_inverted_index.and | 21, 90, 98, 113, 121 |
| abstract_inverted_index.are | 124 |
| abstract_inverted_index.big | 6, 53 |
| abstract_inverted_index.can | 35 |
| abstract_inverted_index.for | 76 |
| abstract_inverted_index.low | 22 |
| abstract_inverted_index.our | 104 |
| abstract_inverted_index.the | 3, 39, 43, 58, 70, 82, 87, 93, 110, 127 |
| abstract_inverted_index.This | 0, 50 |
| abstract_inverted_index.cost | 23 |
| abstract_inverted_index.data | 7, 34, 47, 54, 60, 88, 139 |
| abstract_inverted_index.high | 94, 96, 99 |
| abstract_inverted_index.such | 117 |
| abstract_inverted_index.thus | 41 |
| abstract_inverted_index.with | 109, 133, 140 |
| abstract_inverted_index.Sobel | 122 |
| abstract_inverted_index.Spark | 111 |
| abstract_inverted_index.image | 114 |
| abstract_inverted_index.large | 29 |
| abstract_inverted_index.paper | 51 |
| abstract_inverted_index.smart | 15 |
| abstract_inverted_index.using | 136 |
| abstract_inverted_index.actual | 137 |
| abstract_inverted_index.damage | 78, 142 |
| abstract_inverted_index.during | 38 |
| abstract_inverted_index.filter | 120, 123 |
| abstract_inverted_index.handle | 57, 92 |
| abstract_inverted_index.health | 12, 64 |
| abstract_inverted_index.highly | 32 |
| abstract_inverted_index.images | 75 |
| abstract_inverted_index.making | 19 |
| abstract_inverted_index.online | 10, 24 |
| abstract_inverted_index.sensor | 16 |
| abstract_inverted_index.slabs, | 135 |
| abstract_inverted_index.study, | 105 |
| abstract_inverted_index.explore | 81 |
| abstract_inverted_index.induced | 141 |
| abstract_inverted_index.thermal | 74 |
| abstract_inverted_index.uniform | 119 |
| abstract_inverted_index.variety | 100 |
| abstract_inverted_index.volume, | 95 |
| abstract_inverted_index.wrapped | 125 |
| abstract_inverted_index.acquired | 37 |
| abstract_inverted_index.analysis | 71 |
| abstract_inverted_index.capacity | 44 |
| abstract_inverted_index.concrete | 134 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.infrared | 73 |
| abstract_inverted_index.mappers. | 128 |
| abstract_inverted_index.obtained | 61 |
| abstract_inverted_index.progress | 20 |
| abstract_inverted_index.velocity | 97 |
| abstract_inverted_index.MapReduce | 83, 106 |
| abstract_inverted_index.analytics | 8, 48, 89 |
| abstract_inverted_index.exceeding | 42 |
| abstract_inverted_index.functions | 116 |
| abstract_inverted_index.platform, | 112 |
| abstract_inverted_index.possible, | 28 |
| abstract_inverted_index.technique | 84 |
| abstract_inverted_index.diagnosis. | 79 |
| abstract_inverted_index.highvolume | 59 |
| abstract_inverted_index.manuscript | 1 |
| abstract_inverted_index.monitoring | 25 |
| abstract_inverted_index.processing | 115 |
| abstract_inverted_index.quantities | 30 |
| abstract_inverted_index.structural | 11, 63, 77 |
| abstract_inverted_index.techniques | 55 |
| abstract_inverted_index.technology | 17 |
| abstract_inverted_index.application | 4 |
| abstract_inverted_index.efficiently | 91 |
| abstract_inverted_index.illustrated | 132 |
| abstract_inverted_index.implemented | 108 |
| abstract_inverted_index.investigate | 69 |
| abstract_inverted_index.methodology | 130 |
| abstract_inverted_index.monitoring, | 40 |
| abstract_inverted_index.monitoring. | 13, 65 |
| abstract_inverted_index.parallelize | 86 |
| abstract_inverted_index.particular, | 67 |
| abstract_inverted_index.techniques. | 49 |
| abstract_inverted_index.traditional | 46 |
| abstract_inverted_index.experimental | 138 |
| abstract_inverted_index.increasingly | 27 |
| abstract_inverted_index.information. | 102 |
| abstract_inverted_index.investigates | 52 |
| abstract_inverted_index.heterogeneous | 33 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.72434567 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |