Big Data, Small Bias: Harmonizing Diffusion MRI-Based Structural Connectomes to Mitigate Site-Related Bias in Data Integration Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.10.08.617340
Diffusion MRI-based structural connectomes are increasingly used to investigate brain connectivity changes associated with various disorders. However, small sample sizes in individual studies, along with highly heterogeneous disorder-related manifestations, underscore the need to pool datasets across multiple studies to be able to identify coherent and generalizable connectivity patterns linked to these disorders. Yet, combining datasets introduces site-related differences due to variations in scanner hardware or acquisition protocols. These differences highlight the necessity for statistical data harmonization to mitigate site-related effects on structural connectomes while preserving the biological information associated with participant demographics and the disorders. While several paradigms exist for harmonizing normally distributed neuroimaging measures, this paper represents the first effort to establish a harmonization framework specifically tailored for the structural connectome. We conduct a thorough investigation of various statistical harmonization methods, adapting them to accommodate the unique distributional characteristics and graph-based properties of structural connectomes. Through rigorous evaluation, we demonstrate that the generalized linear model with a log-linked gamma model (gamma-GLM) outperforms other approaches in modeling structural connectomes, enabling the effective removal of site-related biases in both edge-based and downstream graph analyses while preserving biological variability. Two real-world applications further highlight the utility of our harmonization framework in addressing challenges in multi-site structural connectome analysis. Specifically, harmonization with gamma-GLM enhances the generalizability of connectome-based machine learning predictors to new datasets and increases statistical power for detecting group-level differences. Our work provides essential guidelines for harmonizing multi-site structural connectomes, paving the way for more robust discoveries through collaborative research in the era of team science and big data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.10.08.617340
- https://www.biorxiv.org/content/biorxiv/early/2024/10/12/2024.10.08.617340.full.pdf
- OA Status
- green
- References
- 72
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403350843
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403350843Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.10.08.617340Digital Object Identifier
- Title
-
Big Data, Small Bias: Harmonizing Diffusion MRI-Based Structural Connectomes to Mitigate Site-Related Bias in Data IntegrationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-12Full publication date if available
- Authors
-
Rui Sherry Shen, Drew Parker, Andrew A. Chen, Benjamin E. Yerys, Birkan Tunç, Timothy P. L. Roberts, Russell T. Shinohara, Ragini VermaList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.10.08.617340Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/10/12/2024.10.08.617340.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/10/12/2024.10.08.617340.full.pdfDirect OA link when available
- Concepts
-
Harmonization, Computer science, Computational biology, Biology, Philosophy, AestheticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
72Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403350843 |
|---|---|
| doi | https://doi.org/10.1101/2024.10.08.617340 |
| ids.doi | https://doi.org/10.1101/2024.10.08.617340 |
| ids.openalex | https://openalex.org/W4403350843 |
| fwci | 0.0 |
| type | preprint |
| title | Big Data, Small Bias: Harmonizing Diffusion MRI-Based Structural Connectomes to Mitigate Site-Related Bias in Data Integration |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T11304 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.991599977016449 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779962950 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8990001082420349 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5659376 |
| concepts[0].display_name | Harmonization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.35146409273147583 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C70721500 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3401503562927246 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[2].display_name | Computational biology |
| concepts[3].id | https://openalex.org/C86803240 |
| concepts[3].level | 0 |
| concepts[3].score | 0.12199893593788147 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[3].display_name | Biology |
| concepts[4].id | https://openalex.org/C138885662 |
| concepts[4].level | 0 |
| concepts[4].score | 0.060207515954971313 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[4].display_name | Philosophy |
| concepts[5].id | https://openalex.org/C107038049 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q35986 |
| concepts[5].display_name | Aesthetics |
| keywords[0].id | https://openalex.org/keywords/harmonization |
| keywords[0].score | 0.8990001082420349 |
| keywords[0].display_name | Harmonization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.35146409273147583 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computational-biology |
| keywords[2].score | 0.3401503562927246 |
| keywords[2].display_name | Computational biology |
| keywords[3].id | https://openalex.org/keywords/biology |
| keywords[3].score | 0.12199893593788147 |
| keywords[3].display_name | Biology |
| keywords[4].id | https://openalex.org/keywords/philosophy |
| keywords[4].score | 0.060207515954971313 |
| keywords[4].display_name | Philosophy |
| language | en |
| locations[0].id | doi:10.1101/2024.10.08.617340 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/10/12/2024.10.08.617340.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.10.08.617340 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5109821393 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4404-9741 |
| authorships[0].author.display_name | Rui Sherry Shen |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Bioengineering, University of Pennsylvania |
| authorships[0].institutions[0].id | https://openalex.org/I79576946 |
| authorships[0].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Pennsylvania |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rui Sherry Shen |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Bioengineering, University of Pennsylvania |
| authorships[1].author.id | https://openalex.org/A5112588875 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Drew Parker |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[1].affiliations[0].raw_affiliation_string | Perelman School of Medicine, University of Pennsylvania |
| authorships[1].institutions[0].id | https://openalex.org/I79576946 |
| authorships[1].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Pennsylvania |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Drew Parker |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Perelman School of Medicine, University of Pennsylvania |
| authorships[2].author.id | https://openalex.org/A5046024802 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5027-6422 |
| authorships[2].author.display_name | Andrew A. Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Andrew An Chen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5026885055 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7370-0740 |
| authorships[3].author.display_name | Benjamin E. Yerys |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Benjamin E. Yerys |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5086117355 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2294-4024 |
| authorships[4].author.display_name | Birkan Tunç |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Birkan Tunç |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5041895846 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7320-4870 |
| authorships[5].author.display_name | Timothy P. L. Roberts |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Timothy P.L. Roberts |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5037974362 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8627-8203 |
| authorships[6].author.display_name | Russell T. Shinohara |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Russell T. Shinohara |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5083518354 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7479-1007 |
| authorships[7].author.display_name | Ragini Verma |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[7].affiliations[0].raw_affiliation_string | Perelman School of Medicine, University of Pennsylvania |
| authorships[7].institutions[0].id | https://openalex.org/I79576946 |
| authorships[7].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Pennsylvania |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Ragini Verma |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Perelman School of Medicine, University of Pennsylvania |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2024/10/12/2024.10.08.617340.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-13T00:00:00 |
| display_name | Big Data, Small Bias: Harmonizing Diffusion MRI-Based Structural Connectomes to Mitigate Site-Related Bias in Data Integration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2006073222, https://openalex.org/W2488916264, https://openalex.org/W2323573032, https://openalex.org/W198625436, https://openalex.org/W1908077024, https://openalex.org/W2095388346, https://openalex.org/W2379751185 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2024.10.08.617340 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/10/12/2024.10.08.617340.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.10.08.617340 |
| primary_location.id | doi:10.1101/2024.10.08.617340 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/10/12/2024.10.08.617340.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.10.08.617340 |
| publication_date | 2024-10-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2064125324, https://openalex.org/W2039448553, https://openalex.org/W2590651237, https://openalex.org/W2137231705, https://openalex.org/W2153943009, https://openalex.org/W2105824687, https://openalex.org/W2782556780, https://openalex.org/W2144981148, https://openalex.org/W2145381610, https://openalex.org/W2474252585, https://openalex.org/W761823288, https://openalex.org/W1617250309, https://openalex.org/W2134201702, https://openalex.org/W2146406922, https://openalex.org/W2790446590, https://openalex.org/W2522924024, https://openalex.org/W1979893109, https://openalex.org/W2084451675, https://openalex.org/W1972336188, https://openalex.org/W2101805339, https://openalex.org/W2027094605, https://openalex.org/W2344337444, https://openalex.org/W2612025826, https://openalex.org/W2885080442, https://openalex.org/W2914407028, https://openalex.org/W3209290629, https://openalex.org/W2107665951, https://openalex.org/W4243366239, https://openalex.org/W2950030754, https://openalex.org/W2811386582, https://openalex.org/W2950845927, https://openalex.org/W2901971624, https://openalex.org/W4200060838, https://openalex.org/W4283075736, https://openalex.org/W2069088601, https://openalex.org/W2916864041, https://openalex.org/W2090187177, https://openalex.org/W2069494733, https://openalex.org/W2127309075, https://openalex.org/W2071881327, https://openalex.org/W4241074797, https://openalex.org/W1970928383, https://openalex.org/W2970898057, https://openalex.org/W2137679584, https://openalex.org/W2101135654, https://openalex.org/W2004293194, https://openalex.org/W2523692751, https://openalex.org/W4288625073, https://openalex.org/W3124564277, https://openalex.org/W2135757495, https://openalex.org/W3199011255, https://openalex.org/W2801490189, https://openalex.org/W2167822639, https://openalex.org/W2141009231, https://openalex.org/W2961560364, https://openalex.org/W2552208519, https://openalex.org/W2063404606, https://openalex.org/W4225246927, https://openalex.org/W2976981404, https://openalex.org/W2292351724, https://openalex.org/W2210537348, https://openalex.org/W2161756941, https://openalex.org/W2003321630, https://openalex.org/W2141407136, https://openalex.org/W2101328227, https://openalex.org/W4398183239, https://openalex.org/W4205164650, https://openalex.org/W4214758645, https://openalex.org/W3040685212, https://openalex.org/W2154065358, https://openalex.org/W3206840963, https://openalex.org/W4318577470 |
| referenced_works_count | 72 |
| abstract_inverted_index.a | 114, 125, 158 |
| abstract_inverted_index.We | 123 |
| abstract_inverted_index.be | 40 |
| abstract_inverted_index.in | 21, 62, 166, 177, 199, 202, 250 |
| abstract_inverted_index.of | 128, 144, 174, 195, 214, 253 |
| abstract_inverted_index.on | 81 |
| abstract_inverted_index.or | 65 |
| abstract_inverted_index.to | 8, 33, 39, 42, 50, 60, 77, 112, 135, 219 |
| abstract_inverted_index.we | 150 |
| abstract_inverted_index.Our | 230 |
| abstract_inverted_index.Two | 188 |
| abstract_inverted_index.and | 45, 93, 141, 180, 222, 256 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.big | 257 |
| abstract_inverted_index.due | 59 |
| abstract_inverted_index.era | 252 |
| abstract_inverted_index.for | 73, 100, 119, 226, 235, 243 |
| abstract_inverted_index.new | 220 |
| abstract_inverted_index.our | 196 |
| abstract_inverted_index.the | 31, 71, 86, 94, 109, 120, 137, 153, 171, 193, 212, 241, 251 |
| abstract_inverted_index.way | 242 |
| abstract_inverted_index.Yet, | 53 |
| abstract_inverted_index.able | 41 |
| abstract_inverted_index.both | 178 |
| abstract_inverted_index.data | 75 |
| abstract_inverted_index.more | 244 |
| abstract_inverted_index.need | 32 |
| abstract_inverted_index.pool | 34 |
| abstract_inverted_index.team | 254 |
| abstract_inverted_index.that | 152 |
| abstract_inverted_index.them | 134 |
| abstract_inverted_index.this | 106 |
| abstract_inverted_index.used | 7 |
| abstract_inverted_index.with | 14, 25, 90, 157, 209 |
| abstract_inverted_index.work | 231 |
| abstract_inverted_index.These | 68 |
| abstract_inverted_index.While | 96 |
| abstract_inverted_index.along | 24 |
| abstract_inverted_index.brain | 10 |
| abstract_inverted_index.data. | 258 |
| abstract_inverted_index.exist | 99 |
| abstract_inverted_index.first | 110 |
| abstract_inverted_index.gamma | 160 |
| abstract_inverted_index.graph | 182 |
| abstract_inverted_index.model | 156, 161 |
| abstract_inverted_index.other | 164 |
| abstract_inverted_index.paper | 107 |
| abstract_inverted_index.power | 225 |
| abstract_inverted_index.sizes | 20 |
| abstract_inverted_index.small | 18 |
| abstract_inverted_index.these | 51 |
| abstract_inverted_index.while | 84, 184 |
| abstract_inverted_index.across | 36 |
| abstract_inverted_index.biases | 176 |
| abstract_inverted_index.effort | 111 |
| abstract_inverted_index.highly | 26 |
| abstract_inverted_index.linear | 155 |
| abstract_inverted_index.linked | 49 |
| abstract_inverted_index.paving | 240 |
| abstract_inverted_index.robust | 245 |
| abstract_inverted_index.sample | 19 |
| abstract_inverted_index.unique | 138 |
| abstract_inverted_index.Through | 147 |
| abstract_inverted_index.changes | 12 |
| abstract_inverted_index.conduct | 124 |
| abstract_inverted_index.effects | 80 |
| abstract_inverted_index.further | 191 |
| abstract_inverted_index.machine | 216 |
| abstract_inverted_index.removal | 173 |
| abstract_inverted_index.scanner | 63 |
| abstract_inverted_index.science | 255 |
| abstract_inverted_index.several | 97 |
| abstract_inverted_index.studies | 38 |
| abstract_inverted_index.through | 247 |
| abstract_inverted_index.utility | 194 |
| abstract_inverted_index.various | 15, 129 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.adapting | 133 |
| abstract_inverted_index.analyses | 183 |
| abstract_inverted_index.coherent | 44 |
| abstract_inverted_index.datasets | 35, 55, 221 |
| abstract_inverted_index.enabling | 170 |
| abstract_inverted_index.enhances | 211 |
| abstract_inverted_index.hardware | 64 |
| abstract_inverted_index.identify | 43 |
| abstract_inverted_index.learning | 217 |
| abstract_inverted_index.methods, | 132 |
| abstract_inverted_index.mitigate | 78 |
| abstract_inverted_index.modeling | 167 |
| abstract_inverted_index.multiple | 37 |
| abstract_inverted_index.normally | 102 |
| abstract_inverted_index.patterns | 48 |
| abstract_inverted_index.provides | 232 |
| abstract_inverted_index.research | 249 |
| abstract_inverted_index.rigorous | 148 |
| abstract_inverted_index.studies, | 23 |
| abstract_inverted_index.tailored | 118 |
| abstract_inverted_index.thorough | 126 |
| abstract_inverted_index.Diffusion | 1 |
| abstract_inverted_index.MRI-based | 2 |
| abstract_inverted_index.analysis. | 206 |
| abstract_inverted_index.combining | 54 |
| abstract_inverted_index.detecting | 227 |
| abstract_inverted_index.effective | 172 |
| abstract_inverted_index.essential | 233 |
| abstract_inverted_index.establish | 113 |
| abstract_inverted_index.framework | 116, 198 |
| abstract_inverted_index.gamma-GLM | 210 |
| abstract_inverted_index.highlight | 70, 192 |
| abstract_inverted_index.increases | 223 |
| abstract_inverted_index.measures, | 105 |
| abstract_inverted_index.necessity | 72 |
| abstract_inverted_index.paradigms | 98 |
| abstract_inverted_index.addressing | 200 |
| abstract_inverted_index.approaches | 165 |
| abstract_inverted_index.associated | 13, 89 |
| abstract_inverted_index.biological | 87, 186 |
| abstract_inverted_index.challenges | 201 |
| abstract_inverted_index.connectome | 205 |
| abstract_inverted_index.disorders. | 16, 52, 95 |
| abstract_inverted_index.downstream | 181 |
| abstract_inverted_index.edge-based | 179 |
| abstract_inverted_index.guidelines | 234 |
| abstract_inverted_index.individual | 22 |
| abstract_inverted_index.introduces | 56 |
| abstract_inverted_index.log-linked | 159 |
| abstract_inverted_index.multi-site | 203, 237 |
| abstract_inverted_index.predictors | 218 |
| abstract_inverted_index.preserving | 85, 185 |
| abstract_inverted_index.properties | 143 |
| abstract_inverted_index.protocols. | 67 |
| abstract_inverted_index.real-world | 189 |
| abstract_inverted_index.represents | 108 |
| abstract_inverted_index.structural | 3, 82, 121, 145, 168, 204, 238 |
| abstract_inverted_index.underscore | 30 |
| abstract_inverted_index.variations | 61 |
| abstract_inverted_index.(gamma-GLM) | 162 |
| abstract_inverted_index.accommodate | 136 |
| abstract_inverted_index.acquisition | 66 |
| abstract_inverted_index.connectome. | 122 |
| abstract_inverted_index.connectomes | 4, 83 |
| abstract_inverted_index.demonstrate | 151 |
| abstract_inverted_index.differences | 58, 69 |
| abstract_inverted_index.discoveries | 246 |
| abstract_inverted_index.distributed | 103 |
| abstract_inverted_index.evaluation, | 149 |
| abstract_inverted_index.generalized | 154 |
| abstract_inverted_index.graph-based | 142 |
| abstract_inverted_index.group-level | 228 |
| abstract_inverted_index.harmonizing | 101, 236 |
| abstract_inverted_index.information | 88 |
| abstract_inverted_index.investigate | 9 |
| abstract_inverted_index.outperforms | 163 |
| abstract_inverted_index.participant | 91 |
| abstract_inverted_index.statistical | 74, 130, 224 |
| abstract_inverted_index.applications | 190 |
| abstract_inverted_index.connectivity | 11, 47 |
| abstract_inverted_index.connectomes, | 169, 239 |
| abstract_inverted_index.connectomes. | 146 |
| abstract_inverted_index.demographics | 92 |
| abstract_inverted_index.differences. | 229 |
| abstract_inverted_index.increasingly | 6 |
| abstract_inverted_index.neuroimaging | 104 |
| abstract_inverted_index.site-related | 57, 79, 175 |
| abstract_inverted_index.specifically | 117 |
| abstract_inverted_index.variability. | 187 |
| abstract_inverted_index.Specifically, | 207 |
| abstract_inverted_index.collaborative | 248 |
| abstract_inverted_index.generalizable | 46 |
| abstract_inverted_index.harmonization | 76, 115, 131, 197, 208 |
| abstract_inverted_index.heterogeneous | 27 |
| abstract_inverted_index.investigation | 127 |
| abstract_inverted_index.distributional | 139 |
| abstract_inverted_index.characteristics | 140 |
| abstract_inverted_index.manifestations, | 29 |
| abstract_inverted_index.connectome-based | 215 |
| abstract_inverted_index.disorder-related | 28 |
| abstract_inverted_index.generalizability | 213 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5109821393 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I79576946 |
| citation_normalized_percentile.value | 0.224321 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |