Big Data, Small Bias: Harmonizing Diffusion MRI ‐Based Structural Connectomes to Mitigate Site‐Related Bias in Data Integration
Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/hbm.70256
Diffusion MRI‐based structural connectomes are increasingly used to investigate brain connectivity changes associated with various disorders. However, small sample sizes in individual studies, along with highly heterogeneous disorder‐related manifestations, underscore the need to pool datasets across multiple studies to be able to identify coherent and generalizable connectivity patterns linked to these disorders. Yet, combining datasets introduces site‐related differences due to variations in scanner hardware or acquisition protocols. These differences highlight the necessity for statistical data harmonization to mitigate site‐related effects on structural connectomes while preserving the biological information associated with participant demographics and the disorders. While several paradigms exist for harmonizing normally distributed neuroimaging measures, this paper represents the first effort to establish a harmonization framework specifically tailored for the structural connectome. We conduct a thorough investigation of various statistical harmonization methods, adapting them to accommodate the unique distributional characteristics and graph‐based properties of structural connectomes. Through rigorous evaluation, we show that our MATCH algorithm, based on the gamma‐distributed model, consistently outperforms existing approaches in modeling structural connectomes, enabling the effective removal of site‐related biases in both edge‐based and downstream graph analyses while preserving biological variability. Two real‐world applications further highlight the utility of our harmonization framework in addressing challenges in multi‐site structural connectome analysis. Specifically, harmonization with MATCH enhances the generalizability of connectome‐based machine learning predictors to new datasets and increases statistical power for detecting group‐level differences. Our work provides essential guidelines for harmonizing multi‐site structural connectomes, paving the way for more robust discoveries through collaborative research in the era of team science and big data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/hbm.70256
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.70256
- OA Status
- gold
- References
- 74
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411701429
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411701429Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/hbm.70256Digital Object Identifier
- Title
-
Big Data, Small Bias: Harmonizing Diffusion
MRI ‐Based Structural Connectomes to Mitigate Site‐Related Bias in Data IntegrationWork title - Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-15Full publication date if available
- Authors
-
Rui Sherry Shen, Drew Parker, Andrew A. Chen, Benjamin E. Yerys, Birkan Tunç, Timothy P. L. Roberts, Russell T. Shinohara, Ragini VermaList of authors in order
- Landing page
-
https://doi.org/10.1002/hbm.70256Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.70256Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.70256Direct OA link when available
- Concepts
-
Connectome, Harmonization, Computer science, Generalizability theory, Human Connectome Project, Data mining, Machine learning, Artificial intelligence, Data science, Functional connectivity, Neuroscience, Statistics, Psychology, Mathematics, Acoustics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
74Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411701429 |
|---|---|
| doi | https://doi.org/10.1002/hbm.70256 |
| ids.doi | https://doi.org/10.1002/hbm.70256 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40563239 |
| ids.openalex | https://openalex.org/W4411701429 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D063132 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Connectome |
| mesh[2].qualifier_ui | Q000592 |
| mesh[2].descriptor_ui | D063132 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | standards |
| mesh[2].descriptor_name | Connectome |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D038524 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Diffusion Magnetic Resonance Imaging |
| mesh[4].qualifier_ui | Q000592 |
| mesh[4].descriptor_ui | D038524 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | standards |
| mesh[4].descriptor_name | Diffusion Magnetic Resonance Imaging |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000077558 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Big Data |
| mesh[6].qualifier_ui | Q000000981 |
| mesh[6].descriptor_ui | D001921 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | diagnostic imaging |
| mesh[6].descriptor_name | Brain |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000328 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Adult |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008297 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Male |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D005260 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Female |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D015982 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Bias |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D006801 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Humans |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D063132 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Connectome |
| mesh[13].qualifier_ui | Q000592 |
| mesh[13].descriptor_ui | D063132 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | standards |
| mesh[13].descriptor_name | Connectome |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D038524 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Diffusion Magnetic Resonance Imaging |
| mesh[15].qualifier_ui | Q000592 |
| mesh[15].descriptor_ui | D038524 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | standards |
| mesh[15].descriptor_name | Diffusion Magnetic Resonance Imaging |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000077558 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Big Data |
| mesh[17].qualifier_ui | Q000000981 |
| mesh[17].descriptor_ui | D001921 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | diagnostic imaging |
| mesh[17].descriptor_name | Brain |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000328 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Adult |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D008297 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Male |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D005260 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Female |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D015982 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Bias |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D006801 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Humans |
| mesh[23].qualifier_ui | Q000379 |
| mesh[23].descriptor_ui | D063132 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | methods |
| mesh[23].descriptor_name | Connectome |
| mesh[24].qualifier_ui | Q000592 |
| mesh[24].descriptor_ui | D063132 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | standards |
| mesh[24].descriptor_name | Connectome |
| mesh[25].qualifier_ui | Q000379 |
| mesh[25].descriptor_ui | D038524 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | methods |
| mesh[25].descriptor_name | Diffusion Magnetic Resonance Imaging |
| mesh[26].qualifier_ui | Q000592 |
| mesh[26].descriptor_ui | D038524 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | standards |
| mesh[26].descriptor_name | Diffusion Magnetic Resonance Imaging |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000077558 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Big Data |
| mesh[28].qualifier_ui | Q000000981 |
| mesh[28].descriptor_ui | D001921 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | diagnostic imaging |
| mesh[28].descriptor_name | Brain |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000328 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Adult |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D008297 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Male |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D005260 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Female |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D015982 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Bias |
| type | article |
| title | Big Data, Small Bias: Harmonizing Diffusion |
| awards[0].id | https://openalex.org/G3984680000 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | 1‐R01 MH117807‐01A1 |
| awards[0].funder_display_name | National Institutes of Health |
| biblio.issue | 9 |
| biblio.volume | 46 |
| biblio.last_page | e70256 |
| biblio.first_page | e70256 |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T11304 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[2].id | https://openalex.org/T10378 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9932000041007996 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Advanced MRI Techniques and Applications |
| funders[0].id | https://openalex.org/F4320332161 |
| funders[0].ror | https://ror.org/01cwqze88 |
| funders[0].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list.value | 3200 |
| apc_list.currency | USD |
| apc_list.value_usd | 3200 |
| apc_paid.value | 3200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3200 |
| concepts[0].id | https://openalex.org/C45715564 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9187738299369812 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1292103 |
| concepts[0].display_name | Connectome |
| concepts[1].id | https://openalex.org/C2779962950 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7885782718658447 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5659376 |
| concepts[1].display_name | Harmonization |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7128371000289917 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C27158222 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6641194224357605 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[3].display_name | Generalizability theory |
| concepts[4].id | https://openalex.org/C97820695 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6207327246665955 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q387749 |
| concepts[4].display_name | Human Connectome Project |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4537104666233063 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4042922258377075 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.39234912395477295 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36176806688308716 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C3018011982 |
| concepts[9].level | 2 |
| concepts[9].score | 0.19627201557159424 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[9].display_name | Functional connectivity |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.17622369527816772 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.12958839535713196 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.12497949600219727 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C24890656 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[14].display_name | Acoustics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/connectome |
| keywords[0].score | 0.9187738299369812 |
| keywords[0].display_name | Connectome |
| keywords[1].id | https://openalex.org/keywords/harmonization |
| keywords[1].score | 0.7885782718658447 |
| keywords[1].display_name | Harmonization |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7128371000289917 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/generalizability-theory |
| keywords[3].score | 0.6641194224357605 |
| keywords[3].display_name | Generalizability theory |
| keywords[4].id | https://openalex.org/keywords/human-connectome-project |
| keywords[4].score | 0.6207327246665955 |
| keywords[4].display_name | Human Connectome Project |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.4537104666233063 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4042922258377075 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.39234912395477295 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.36176806688308716 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/functional-connectivity |
| keywords[9].score | 0.19627201557159424 |
| keywords[9].display_name | Functional connectivity |
| keywords[10].id | https://openalex.org/keywords/neuroscience |
| keywords[10].score | 0.17622369527816772 |
| keywords[10].display_name | Neuroscience |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.12958839535713196 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/psychology |
| keywords[12].score | 0.12497949600219727 |
| keywords[12].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1002/hbm.70256 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S121666818 |
| locations[0].source.issn | 1065-9471, 1097-0193 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1065-9471 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Human Brain Mapping |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.70256 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Human Brain Mapping |
| locations[0].landing_page_url | https://doi.org/10.1002/hbm.70256 |
| locations[1].id | pmid:40563239 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Human brain mapping |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40563239 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12198055 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Hum Brain Mapp |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12198055 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5109821393 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4404-9741 |
| authorships[0].author.display_name | Rui Sherry Shen |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[0].affiliations[0].raw_affiliation_string | Diffusion & Connectomics in Precision Healthcare Research, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[0].institutions[0].id | https://openalex.org/I79576946 |
| authorships[0].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Pennsylvania |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rui Sherry Shen |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Diffusion & Connectomics in Precision Healthcare Research, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[1].author.id | https://openalex.org/A5030752610 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8017-0525 |
| authorships[1].author.display_name | Drew Parker |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[1].affiliations[0].raw_affiliation_string | Diffusion & Connectomics in Precision Healthcare Research, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[1].institutions[0].id | https://openalex.org/I79576946 |
| authorships[1].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Pennsylvania |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Drew Parker |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Diffusion & Connectomics in Precision Healthcare Research, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[2].author.id | https://openalex.org/A5046024802 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5027-6422 |
| authorships[2].author.display_name | Andrew A. Chen |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I153297377 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA |
| authorships[2].institutions[0].id | https://openalex.org/I153297377 |
| authorships[2].institutions[0].ror | https://ror.org/012jban78 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I153297377 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Medical University of South Carolina |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Andrew An Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA |
| authorships[3].author.id | https://openalex.org/A5026885055 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7370-0740 |
| authorships[3].author.display_name | Benjamin E. Yerys |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1335321130 |
| authorships[3].affiliations[0].raw_affiliation_string | Advancing Transition and Learning for Adult Success Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1335321130 |
| authorships[3].institutions[0].ror | https://ror.org/01z7r7q48 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1335321130 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Children's Hospital of Philadelphia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Benjamin E. Yerys |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Advancing Transition and Learning for Adult Success Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA |
| authorships[4].author.id | https://openalex.org/A5086117355 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2294-4024 |
| authorships[4].author.display_name | Birkan Tunç |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1335321130 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1335321130 |
| authorships[4].institutions[0].ror | https://ror.org/01z7r7q48 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1335321130 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Children's Hospital of Philadelphia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Birkan Tunç |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA |
| authorships[5].author.id | https://openalex.org/A5041895846 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7320-4870 |
| authorships[5].author.display_name | Timothy P. L. Roberts |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1335321130, https://openalex.org/I4210145671 |
| authorships[5].affiliations[0].raw_affiliation_string | Program in Advanced Imaging Research, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA |
| authorships[5].institutions[0].id | https://openalex.org/I4210145671 |
| authorships[5].institutions[0].ror | https://ror.org/047c3xe48 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210145671 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Advanced Imaging Research (United States) |
| authorships[5].institutions[1].id | https://openalex.org/I1335321130 |
| authorships[5].institutions[1].ror | https://ror.org/01z7r7q48 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I1335321130 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | Children's Hospital of Philadelphia |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Timothy P. L. Roberts |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Program in Advanced Imaging Research, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA |
| authorships[6].author.id | https://openalex.org/A5037974362 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8627-8203 |
| authorships[6].author.display_name | Russell T. Shinohara |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210127693, https://openalex.org/I79576946 |
| authorships[6].affiliations[0].raw_affiliation_string | Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[6].institutions[0].id | https://openalex.org/I4210127693 |
| authorships[6].institutions[0].ror | https://ror.org/047939x15 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I102322052, https://openalex.org/I1335321130, https://openalex.org/I4210127693, https://openalex.org/I79576946 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Penn Center for AIDS Research |
| authorships[6].institutions[1].id | https://openalex.org/I79576946 |
| authorships[6].institutions[1].ror | https://ror.org/00b30xv10 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I79576946 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | University of Pennsylvania |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Russell T. Shinohara |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[7].author.id | https://openalex.org/A5083518354 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7479-1007 |
| authorships[7].author.display_name | Ragini Verma |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[7].affiliations[0].raw_affiliation_string | Diffusion & Connectomics in Precision Healthcare Research, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[7].institutions[0].id | https://openalex.org/I79576946 |
| authorships[7].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Pennsylvania |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Ragini Verma |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Diffusion & Connectomics in Precision Healthcare Research, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.70256 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-06-27T00:00:00 |
| display_name | Big Data, Small Bias: Harmonizing Diffusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-20T23:13:51.555489 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W3136590534, https://openalex.org/W4280586040, https://openalex.org/W4323359826, https://openalex.org/W2523870064, https://openalex.org/W4298370694, https://openalex.org/W4306360841, https://openalex.org/W2293697580, https://openalex.org/W4292263000, https://openalex.org/W3117051909, https://openalex.org/W3126842272 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1002/hbm.70256 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S121666818 |
| best_oa_location.source.issn | 1065-9471, 1097-0193 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1065-9471 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Human Brain Mapping |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.70256 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Human Brain Mapping |
| best_oa_location.landing_page_url | https://doi.org/10.1002/hbm.70256 |
| primary_location.id | doi:10.1002/hbm.70256 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S121666818 |
| primary_location.source.issn | 1065-9471, 1097-0193 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1065-9471 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Human Brain Mapping |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.70256 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Human Brain Mapping |
| primary_location.landing_page_url | https://doi.org/10.1002/hbm.70256 |
| publication_date | 2025-06-15 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2522924024, https://openalex.org/W1984453610, https://openalex.org/W2127309075, https://openalex.org/W4214758645, https://openalex.org/W1970928383, https://openalex.org/W4225246927, https://openalex.org/W2101805339, https://openalex.org/W2027094605, https://openalex.org/W2105824687, https://openalex.org/W2790446590, https://openalex.org/W4200060838, https://openalex.org/W2101135654, https://openalex.org/W2590651237, https://openalex.org/W2167868121, https://openalex.org/W2063404606, https://openalex.org/W2141407136, https://openalex.org/W4241074797, https://openalex.org/W2004293194, https://openalex.org/W2146406922, https://openalex.org/W2950030754, https://openalex.org/W2961560364, https://openalex.org/W2090187177, https://openalex.org/W4398183239, https://openalex.org/W1617250309, https://openalex.org/W2210537348, https://openalex.org/W2101328227, https://openalex.org/W2914407028, https://openalex.org/W2144981148, https://openalex.org/W2141009231, https://openalex.org/W2064125324, https://openalex.org/W2137679584, https://openalex.org/W2107665951, https://openalex.org/W1972336188, https://openalex.org/W2976981404, https://openalex.org/W2135757495, https://openalex.org/W2153943009, https://openalex.org/W2885080442, https://openalex.org/W2612025826, https://openalex.org/W2137231705, https://openalex.org/W3209290629, https://openalex.org/W2003321630, https://openalex.org/W3040685212, https://openalex.org/W2552208519, https://openalex.org/W2084451675, https://openalex.org/W2069494733, https://openalex.org/W3124564277, https://openalex.org/W4288625073, https://openalex.org/W2344337444, https://openalex.org/W2801490189, https://openalex.org/W3206840963, https://openalex.org/W4283075736, https://openalex.org/W3199011255, https://openalex.org/W2474252585, https://openalex.org/W761823288, https://openalex.org/W4205164650, https://openalex.org/W2292351724, https://openalex.org/W2154065358, https://openalex.org/W2523692751, https://openalex.org/W2167822639, https://openalex.org/W2039448553, https://openalex.org/W2069088601, https://openalex.org/W3092129332, https://openalex.org/W2071881327, https://openalex.org/W2006096283, https://openalex.org/W2782556780, https://openalex.org/W2102521965, https://openalex.org/W2970898057, https://openalex.org/W2995865170, https://openalex.org/W2161756941, https://openalex.org/W1979893109, https://openalex.org/W4318577470, https://openalex.org/W2145381610, https://openalex.org/W2811386582, https://openalex.org/W2134201702 |
| referenced_works_count | 74 |
| abstract_inverted_index.a | 114, 125 |
| abstract_inverted_index.We | 123 |
| abstract_inverted_index.be | 40 |
| abstract_inverted_index.in | 21, 62, 165, 176, 198, 201, 249 |
| abstract_inverted_index.of | 128, 144, 173, 194, 213, 252 |
| abstract_inverted_index.on | 81, 157 |
| abstract_inverted_index.or | 65 |
| abstract_inverted_index.to | 8, 33, 39, 42, 50, 60, 77, 112, 135, 218 |
| abstract_inverted_index.we | 150 |
| abstract_inverted_index.Our | 229 |
| abstract_inverted_index.Two | 187 |
| abstract_inverted_index.and | 45, 93, 141, 179, 221, 255 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.big | 256 |
| abstract_inverted_index.due | 59 |
| abstract_inverted_index.era | 251 |
| abstract_inverted_index.for | 73, 100, 119, 225, 234, 242 |
| abstract_inverted_index.new | 219 |
| abstract_inverted_index.our | 153, 195 |
| abstract_inverted_index.the | 31, 71, 86, 94, 109, 120, 137, 158, 170, 192, 211, 240, 250 |
| abstract_inverted_index.way | 241 |
| abstract_inverted_index.Yet, | 53 |
| abstract_inverted_index.able | 41 |
| abstract_inverted_index.both | 177 |
| abstract_inverted_index.data | 75 |
| abstract_inverted_index.more | 243 |
| abstract_inverted_index.need | 32 |
| abstract_inverted_index.pool | 34 |
| abstract_inverted_index.show | 151 |
| abstract_inverted_index.team | 253 |
| abstract_inverted_index.that | 152 |
| abstract_inverted_index.them | 134 |
| abstract_inverted_index.this | 106 |
| abstract_inverted_index.used | 7 |
| abstract_inverted_index.with | 14, 25, 90, 208 |
| abstract_inverted_index.work | 230 |
| abstract_inverted_index.MATCH | 154, 209 |
| abstract_inverted_index.These | 68 |
| abstract_inverted_index.While | 96 |
| abstract_inverted_index.along | 24 |
| abstract_inverted_index.based | 156 |
| abstract_inverted_index.brain | 10 |
| abstract_inverted_index.data. | 257 |
| abstract_inverted_index.exist | 99 |
| abstract_inverted_index.first | 110 |
| abstract_inverted_index.graph | 181 |
| abstract_inverted_index.paper | 107 |
| abstract_inverted_index.power | 224 |
| abstract_inverted_index.sizes | 20 |
| abstract_inverted_index.small | 18 |
| abstract_inverted_index.these | 51 |
| abstract_inverted_index.while | 84, 183 |
| abstract_inverted_index.across | 36 |
| abstract_inverted_index.biases | 175 |
| abstract_inverted_index.effort | 111 |
| abstract_inverted_index.highly | 26 |
| abstract_inverted_index.linked | 49 |
| abstract_inverted_index.model, | 160 |
| abstract_inverted_index.paving | 239 |
| abstract_inverted_index.robust | 244 |
| abstract_inverted_index.sample | 19 |
| abstract_inverted_index.unique | 138 |
| abstract_inverted_index.Through | 147 |
| abstract_inverted_index.changes | 12 |
| abstract_inverted_index.conduct | 124 |
| abstract_inverted_index.effects | 80 |
| abstract_inverted_index.further | 190 |
| abstract_inverted_index.machine | 215 |
| abstract_inverted_index.removal | 172 |
| abstract_inverted_index.scanner | 63 |
| abstract_inverted_index.science | 254 |
| abstract_inverted_index.several | 97 |
| abstract_inverted_index.studies | 38 |
| abstract_inverted_index.through | 246 |
| abstract_inverted_index.utility | 193 |
| abstract_inverted_index.various | 15, 129 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.adapting | 133 |
| abstract_inverted_index.analyses | 182 |
| abstract_inverted_index.coherent | 44 |
| abstract_inverted_index.datasets | 35, 55, 220 |
| abstract_inverted_index.enabling | 169 |
| abstract_inverted_index.enhances | 210 |
| abstract_inverted_index.existing | 163 |
| abstract_inverted_index.hardware | 64 |
| abstract_inverted_index.identify | 43 |
| abstract_inverted_index.learning | 216 |
| abstract_inverted_index.methods, | 132 |
| abstract_inverted_index.mitigate | 78 |
| abstract_inverted_index.modeling | 166 |
| abstract_inverted_index.multiple | 37 |
| abstract_inverted_index.normally | 102 |
| abstract_inverted_index.patterns | 48 |
| abstract_inverted_index.provides | 231 |
| abstract_inverted_index.research | 248 |
| abstract_inverted_index.rigorous | 148 |
| abstract_inverted_index.studies, | 23 |
| abstract_inverted_index.tailored | 118 |
| abstract_inverted_index.thorough | 126 |
| abstract_inverted_index.Diffusion | 1 |
| abstract_inverted_index.analysis. | 205 |
| abstract_inverted_index.combining | 54 |
| abstract_inverted_index.detecting | 226 |
| abstract_inverted_index.effective | 171 |
| abstract_inverted_index.essential | 232 |
| abstract_inverted_index.establish | 113 |
| abstract_inverted_index.framework | 116, 197 |
| abstract_inverted_index.highlight | 70, 191 |
| abstract_inverted_index.increases | 222 |
| abstract_inverted_index.measures, | 105 |
| abstract_inverted_index.necessity | 72 |
| abstract_inverted_index.paradigms | 98 |
| abstract_inverted_index.addressing | 199 |
| abstract_inverted_index.algorithm, | 155 |
| abstract_inverted_index.approaches | 164 |
| abstract_inverted_index.associated | 13, 89 |
| abstract_inverted_index.biological | 87, 185 |
| abstract_inverted_index.challenges | 200 |
| abstract_inverted_index.connectome | 204 |
| abstract_inverted_index.disorders. | 16, 52, 95 |
| abstract_inverted_index.downstream | 180 |
| abstract_inverted_index.guidelines | 233 |
| abstract_inverted_index.individual | 22 |
| abstract_inverted_index.introduces | 56 |
| abstract_inverted_index.predictors | 217 |
| abstract_inverted_index.preserving | 85, 184 |
| abstract_inverted_index.properties | 143 |
| abstract_inverted_index.protocols. | 67 |
| abstract_inverted_index.represents | 108 |
| abstract_inverted_index.structural | 3, 82, 121, 145, 167, 203, 237 |
| abstract_inverted_index.underscore | 30 |
| abstract_inverted_index.variations | 61 |
| abstract_inverted_index.MRI‐based | 2 |
| abstract_inverted_index.accommodate | 136 |
| abstract_inverted_index.acquisition | 66 |
| abstract_inverted_index.connectome. | 122 |
| abstract_inverted_index.connectomes | 4, 83 |
| abstract_inverted_index.differences | 58, 69 |
| abstract_inverted_index.discoveries | 245 |
| abstract_inverted_index.distributed | 103 |
| abstract_inverted_index.evaluation, | 149 |
| abstract_inverted_index.harmonizing | 101, 235 |
| abstract_inverted_index.information | 88 |
| abstract_inverted_index.investigate | 9 |
| abstract_inverted_index.outperforms | 162 |
| abstract_inverted_index.participant | 91 |
| abstract_inverted_index.statistical | 74, 130, 223 |
| abstract_inverted_index.applications | 189 |
| abstract_inverted_index.connectivity | 11, 47 |
| abstract_inverted_index.connectomes, | 168, 238 |
| abstract_inverted_index.connectomes. | 146 |
| abstract_inverted_index.consistently | 161 |
| abstract_inverted_index.demographics | 92 |
| abstract_inverted_index.differences. | 228 |
| abstract_inverted_index.edge‐based | 178 |
| abstract_inverted_index.increasingly | 6 |
| abstract_inverted_index.multi‐site | 202, 236 |
| abstract_inverted_index.neuroimaging | 104 |
| abstract_inverted_index.real‐world | 188 |
| abstract_inverted_index.specifically | 117 |
| abstract_inverted_index.variability. | 186 |
| abstract_inverted_index.Specifically, | 206 |
| abstract_inverted_index.collaborative | 247 |
| abstract_inverted_index.generalizable | 46 |
| abstract_inverted_index.graph‐based | 142 |
| abstract_inverted_index.group‐level | 227 |
| abstract_inverted_index.harmonization | 76, 115, 131, 196, 207 |
| abstract_inverted_index.heterogeneous | 27 |
| abstract_inverted_index.investigation | 127 |
| abstract_inverted_index.distributional | 139 |
| abstract_inverted_index.site‐related | 57, 79, 174 |
| abstract_inverted_index.characteristics | 140 |
| abstract_inverted_index.manifestations, | 29 |
| abstract_inverted_index.generalizability | 212 |
| abstract_inverted_index.connectome‐based | 214 |
| abstract_inverted_index.disorder‐related | 28 |
| abstract_inverted_index.gamma‐distributed | 159 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5083518354, https://openalex.org/A5109821393 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I79576946 |
| citation_normalized_percentile.value | 0.2532405 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |