Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke Management Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/access.2021.3109806
Electrocardiogram (ECG) is sensitive to autonomic dysfunction and cardiac complications derived from ischemic or hemorrhage stroke and is supposed to be a potential prognostic tool in stroke identification and post-stroke treatment. ECG data generated cannot be real-time accumulated, processed, and used for enterprise-level healthcare and wellness services with the existing cardiovascular monitoring system used in hospitals. This study aims to assess the feasibility of a cyber-physical cardiac monitoring system to classify stroke patients with altered cardiac activity and healthy adults. Here, we propose Big-ECG, a cyber-physical cardiac monitoring system for stroke management, consisting of a wearable ECG sensor, data storage and data analysis in a big data platform, and health advisory services using data analytics and medical ontology. We investigated our proposed ECG-based patient monitoring system with 45 stroke patients (average age 70.8 years old, 68% men) admitted to the rehabilitation center of the hospital and 40 healthy elderly volunteers (average age 75.4 years old, 38% men). We recorded ECG at resting state using a single-channel ECG patch within three months of diagnosis of ischemic stroke (clinically confirmed). In statistical results, ECG fiducial features, RR-I, QRS, QT, ST, and heart rate variability (HRV) features, SDSD, LF/HF, LF/(LF + HF), and HF/(LF + HF) are observed as significantly distinctive biomarkers for the stroke group relative to the healthy control group. The Random Trees model presented the best classification performance (overall accuracy: 95.6%) utilizing ECG fiducial variables. This system may assist healthcare enterprises in prognosis and rehabilitation management during post-stroke treatment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2021.3109806
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/09527216.pdf
- OA Status
- gold
- Cited By
- 94
- References
- 64
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3197552172
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3197552172Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2021.3109806Digital Object Identifier
- Title
-
Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke ManagementWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Iqram Hussain, Se Jin ParkList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2021.3109806Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09527216.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09527216.pdfDirect OA link when available
- Concepts
-
Medicine, Stroke (engine), Electrocardiography, Internal medicine, Cardiology, QRS complex, Medical emergency, Physical therapy, Physical medicine and rehabilitation, Engineering, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
94Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 14, 2023: 28, 2022: 36, 2021: 9Per-year citation counts (last 5 years)
- References (count)
-
64Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3197552172 |
|---|---|
| doi | https://doi.org/10.1109/access.2021.3109806 |
| ids.doi | https://doi.org/10.1109/access.2021.3109806 |
| ids.mag | 3197552172 |
| ids.openalex | https://openalex.org/W3197552172 |
| fwci | 15.4372206 |
| type | article |
| title | Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke Management |
| awards[0].id | https://openalex.org/G5405958240 |
| awards[0].funder_id | https://openalex.org/F4320325370 |
| awards[0].display_name | |
| awards[0].funder_award_id | CRC-15-05-ETRI |
| awards[0].funder_display_name | National Research Council of Science and Technology |
| biblio.issue | |
| biblio.volume | 9 |
| biblio.last_page | 123164 |
| biblio.first_page | 123146 |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.992900013923645 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9790999889373779 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T10745 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9731000065803528 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | Heart Rate Variability and Autonomic Control |
| funders[0].id | https://openalex.org/F4320325370 |
| funders[0].ror | https://ror.org/058rymf81 |
| funders[0].display_name | National Research Council of Science and Technology |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7320270538330078 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C2780645631 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6497828364372253 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q671554 |
| concepts[1].display_name | Stroke (engine) |
| concepts[2].id | https://openalex.org/C2780040984 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5333746671676636 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q79785 |
| concepts[2].display_name | Electrocardiography |
| concepts[3].id | https://openalex.org/C126322002 |
| concepts[3].level | 1 |
| concepts[3].score | 0.46404239535331726 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[3].display_name | Internal medicine |
| concepts[4].id | https://openalex.org/C164705383 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4109559655189514 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[4].display_name | Cardiology |
| concepts[5].id | https://openalex.org/C111773187 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4106556475162506 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1969239 |
| concepts[5].display_name | QRS complex |
| concepts[6].id | https://openalex.org/C545542383 |
| concepts[6].level | 1 |
| concepts[6].score | 0.36374422907829285 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2751242 |
| concepts[6].display_name | Medical emergency |
| concepts[7].id | https://openalex.org/C1862650 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3595389723777771 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q186005 |
| concepts[7].display_name | Physical therapy |
| concepts[8].id | https://openalex.org/C99508421 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3508778214454651 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[8].display_name | Physical medicine and rehabilitation |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C78519656 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[10].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.7320270538330078 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/stroke |
| keywords[1].score | 0.6497828364372253 |
| keywords[1].display_name | Stroke (engine) |
| keywords[2].id | https://openalex.org/keywords/electrocardiography |
| keywords[2].score | 0.5333746671676636 |
| keywords[2].display_name | Electrocardiography |
| keywords[3].id | https://openalex.org/keywords/internal-medicine |
| keywords[3].score | 0.46404239535331726 |
| keywords[3].display_name | Internal medicine |
| keywords[4].id | https://openalex.org/keywords/cardiology |
| keywords[4].score | 0.4109559655189514 |
| keywords[4].display_name | Cardiology |
| keywords[5].id | https://openalex.org/keywords/qrs-complex |
| keywords[5].score | 0.4106556475162506 |
| keywords[5].display_name | QRS complex |
| keywords[6].id | https://openalex.org/keywords/medical-emergency |
| keywords[6].score | 0.36374422907829285 |
| keywords[6].display_name | Medical emergency |
| keywords[7].id | https://openalex.org/keywords/physical-therapy |
| keywords[7].score | 0.3595389723777771 |
| keywords[7].display_name | Physical therapy |
| keywords[8].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[8].score | 0.3508778214454651 |
| keywords[8].display_name | Physical medicine and rehabilitation |
| language | en |
| locations[0].id | doi:10.1109/access.2021.3109806 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09527216.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2021.3109806 |
| locations[1].id | pmh:oai:doaj.org/article:8a06bbaa82c143ab9452d822700e51c9 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 9, Pp 123146-123164 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/8a06bbaa82c143ab9452d822700e51c9 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5061804141 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5183-7631 |
| authorships[0].author.display_name | Iqram Hussain |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2799611809 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Medical Convergence Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea. |
| authorships[0].institutions[0].id | https://openalex.org/I2799611809 |
| authorships[0].institutions[0].ror | https://ror.org/01az7b475 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I2799611809 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Korea Research Institute of Standards and Science |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Iqram Hussain |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for Medical Convergence Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea. |
| authorships[1].author.id | https://openalex.org/A5100376689 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1618-5906 |
| authorships[1].author.display_name | Se Jin Park |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2799611809, https://openalex.org/I88761825 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Medical Convergence Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea and Department of KSB (Knowledge-converged Super Brain) Convergence Research, Electronics and Telecommunication Research Institute, Daejeon, South Korea and Department of Medical Physics, University of Science & Technology, Daejeon, South Korea. |
| authorships[1].institutions[0].id | https://openalex.org/I2799611809 |
| authorships[1].institutions[0].ror | https://ror.org/01az7b475 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I2799611809 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Korea Research Institute of Standards and Science |
| authorships[1].institutions[1].id | https://openalex.org/I88761825 |
| authorships[1].institutions[1].ror | https://ror.org/000qzf213 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I88761825 |
| authorships[1].institutions[1].country_code | KR |
| authorships[1].institutions[1].display_name | Korea University of Science and Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Se Jin Park |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Medical Convergence Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea and Department of KSB (Knowledge-converged Super Brain) Convergence Research, Electronics and Telecommunication Research Institute, Daejeon, South Korea and Department of Medical Physics, University of Science & Technology, Daejeon, South Korea. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09527216.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke Management |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.992900013923645 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W2045076272, https://openalex.org/W3143530631, https://openalex.org/W2069481767, https://openalex.org/W2370673536, https://openalex.org/W4307845877, https://openalex.org/W2139075467, https://openalex.org/W2185675845, https://openalex.org/W2044447779, https://openalex.org/W60403443, https://openalex.org/W2472120097 |
| cited_by_count | 94 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 14 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 28 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 36 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 9 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2021.3109806 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09527216.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2021.3109806 |
| primary_location.id | doi:10.1109/access.2021.3109806 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09527216.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2021.3109806 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W4388297464, https://openalex.org/W6790997827, https://openalex.org/W3155328016, https://openalex.org/W2953537379, https://openalex.org/W2885927628, https://openalex.org/W6603851545, https://openalex.org/W2153476503, https://openalex.org/W2112081648, https://openalex.org/W2079098004, https://openalex.org/W2261812172, https://openalex.org/W2162273778, https://openalex.org/W1968868868, https://openalex.org/W3013354695, https://openalex.org/W2994883042, https://openalex.org/W2796318158, https://openalex.org/W3135582951, https://openalex.org/W2042037135, https://openalex.org/W2161818385, https://openalex.org/W2141471720, https://openalex.org/W2968796036, https://openalex.org/W2965520043, https://openalex.org/W2107098692, https://openalex.org/W2087961547, https://openalex.org/W2002220726, https://openalex.org/W2109600715, https://openalex.org/W1526679010, https://openalex.org/W2102977671, https://openalex.org/W2135336260, https://openalex.org/W2029004537, https://openalex.org/W2096451472, https://openalex.org/W2953311577, https://openalex.org/W6704139216, https://openalex.org/W6753373583, https://openalex.org/W3018662283, https://openalex.org/W2563411137, https://openalex.org/W2125775320, https://openalex.org/W2990355251, https://openalex.org/W2806980362, https://openalex.org/W3189936134, https://openalex.org/W2144100180, https://openalex.org/W3109724004, https://openalex.org/W3178835531, https://openalex.org/W2916347600, https://openalex.org/W3110690419, https://openalex.org/W2152262415, https://openalex.org/W2883588905, https://openalex.org/W2592276542, https://openalex.org/W2321954163, https://openalex.org/W2038432545, https://openalex.org/W2098541838, https://openalex.org/W2153832807, https://openalex.org/W2110056222, https://openalex.org/W2119260859, https://openalex.org/W2345633595, https://openalex.org/W129383413, https://openalex.org/W1554663460, https://openalex.org/W94571269, https://openalex.org/W3134182943, https://openalex.org/W4250516408, https://openalex.org/W2330820318, https://openalex.org/W2053216945, https://openalex.org/W1594031697, https://openalex.org/W2885874908, https://openalex.org/W2149713648 |
| referenced_works_count | 64 |
| abstract_inverted_index.a | 21, 64, 84, 94, 104, 164 |
| abstract_inverted_index.40 | 146 |
| abstract_inverted_index.45 | 127 |
| abstract_inverted_index.In | 178 |
| abstract_inverted_index.We | 118, 157 |
| abstract_inverted_index.as | 205 |
| abstract_inverted_index.at | 160 |
| abstract_inverted_index.be | 20, 35 |
| abstract_inverted_index.in | 25, 54, 103, 241 |
| abstract_inverted_index.is | 2, 17 |
| abstract_inverted_index.of | 63, 93, 142, 171, 173 |
| abstract_inverted_index.or | 13 |
| abstract_inverted_index.to | 4, 19, 59, 69, 138, 214 |
| abstract_inverted_index.we | 81 |
| abstract_inverted_index.ECG | 31, 96, 159, 166, 181, 232 |
| abstract_inverted_index.HF) | 202 |
| abstract_inverted_index.QT, | 186 |
| abstract_inverted_index.ST, | 187 |
| abstract_inverted_index.The | 219 |
| abstract_inverted_index.age | 131, 151 |
| abstract_inverted_index.and | 7, 16, 28, 39, 44, 77, 100, 108, 115, 145, 188, 199, 243 |
| abstract_inverted_index.are | 203 |
| abstract_inverted_index.big | 105 |
| abstract_inverted_index.for | 41, 89, 209 |
| abstract_inverted_index.may | 237 |
| abstract_inverted_index.our | 120 |
| abstract_inverted_index.the | 48, 61, 139, 143, 210, 215, 224 |
| abstract_inverted_index.70.8 | 132 |
| abstract_inverted_index.75.4 | 152 |
| abstract_inverted_index.HF), | 198 |
| abstract_inverted_index.QRS, | 185 |
| abstract_inverted_index.This | 56, 235 |
| abstract_inverted_index.aims | 58 |
| abstract_inverted_index.best | 225 |
| abstract_inverted_index.data | 32, 98, 101, 106, 113 |
| abstract_inverted_index.from | 11 |
| abstract_inverted_index.men) | 136 |
| abstract_inverted_index.old, | 134, 154 |
| abstract_inverted_index.rate | 190 |
| abstract_inverted_index.tool | 24 |
| abstract_inverted_index.used | 40, 53 |
| abstract_inverted_index.with | 47, 73, 126 |
| abstract_inverted_index.(ECG) | 1 |
| abstract_inverted_index.(HRV) | 192 |
| abstract_inverted_index.Here, | 80 |
| abstract_inverted_index.RR-I, | 184 |
| abstract_inverted_index.SDSD, | 194 |
| abstract_inverted_index.Trees | 221 |
| abstract_inverted_index.group | 212 |
| abstract_inverted_index.heart | 189 |
| abstract_inverted_index.men). | 156 |
| abstract_inverted_index.model | 222 |
| abstract_inverted_index.patch | 167 |
| abstract_inverted_index.state | 162 |
| abstract_inverted_index.study | 57 |
| abstract_inverted_index.three | 169 |
| abstract_inverted_index.using | 112, 163 |
| abstract_inverted_index.years | 133, 153 |
| abstract_inverted_index.HF/(LF | 200 |
| abstract_inverted_index.LF/(LF | 196 |
| abstract_inverted_index.LF/HF, | 195 |
| abstract_inverted_index.Random | 220 |
| abstract_inverted_index.assess | 60 |
| abstract_inverted_index.assist | 238 |
| abstract_inverted_index.cannot | 34 |
| abstract_inverted_index.center | 141 |
| abstract_inverted_index.during | 246 |
| abstract_inverted_index.group. | 218 |
| abstract_inverted_index.health | 109 |
| abstract_inverted_index.months | 170 |
| abstract_inverted_index.stroke | 15, 26, 71, 90, 128, 175, 211 |
| abstract_inverted_index.system | 52, 68, 88, 125, 236 |
| abstract_inverted_index.within | 168 |
| abstract_inverted_index.adults. | 79 |
| abstract_inverted_index.altered | 74 |
| abstract_inverted_index.cardiac | 8, 66, 75, 86 |
| abstract_inverted_index.control | 217 |
| abstract_inverted_index.derived | 10 |
| abstract_inverted_index.elderly | 148 |
| abstract_inverted_index.healthy | 78, 147, 216 |
| abstract_inverted_index.medical | 116 |
| abstract_inverted_index.patient | 123 |
| abstract_inverted_index.propose | 82 |
| abstract_inverted_index.resting | 161 |
| abstract_inverted_index.sensor, | 97 |
| abstract_inverted_index.storage | 99 |
| abstract_inverted_index.+ | 197, 201 |
| abstract_inverted_index.(average | 130, 150 |
| abstract_inverted_index.(overall | 228 |
| abstract_inverted_index.Big-ECG, | 83 |
| abstract_inverted_index.activity | 76 |
| abstract_inverted_index.admitted | 137 |
| abstract_inverted_index.advisory | 110 |
| abstract_inverted_index.analysis | 102 |
| abstract_inverted_index.classify | 70 |
| abstract_inverted_index.existing | 49 |
| abstract_inverted_index.fiducial | 182, 233 |
| abstract_inverted_index.hospital | 144 |
| abstract_inverted_index.ischemic | 12, 174 |
| abstract_inverted_index.observed | 204 |
| abstract_inverted_index.patients | 72, 129 |
| abstract_inverted_index.proposed | 121 |
| abstract_inverted_index.recorded | 158 |
| abstract_inverted_index.relative | 213 |
| abstract_inverted_index.results, | 180 |
| abstract_inverted_index.services | 46, 111 |
| abstract_inverted_index.supposed | 18 |
| abstract_inverted_index.wearable | 95 |
| abstract_inverted_index.wellness | 45 |
| abstract_inverted_index.ECG-based | 122 |
| abstract_inverted_index.accuracy: | 229 |
| abstract_inverted_index.analytics | 114 |
| abstract_inverted_index.autonomic | 5 |
| abstract_inverted_index.diagnosis | 172 |
| abstract_inverted_index.features, | 183, 193 |
| abstract_inverted_index.generated | 33 |
| abstract_inverted_index.ontology. | 117 |
| abstract_inverted_index.platform, | 107 |
| abstract_inverted_index.potential | 22 |
| abstract_inverted_index.presented | 223 |
| abstract_inverted_index.prognosis | 242 |
| abstract_inverted_index.real-time | 36 |
| abstract_inverted_index.sensitive | 3 |
| abstract_inverted_index.utilizing | 231 |
| abstract_inverted_index.38% | 155 |
| abstract_inverted_index.68% | 135 |
| abstract_inverted_index.biomarkers | 208 |
| abstract_inverted_index.consisting | 92 |
| abstract_inverted_index.healthcare | 43, 239 |
| abstract_inverted_index.hemorrhage | 14 |
| abstract_inverted_index.hospitals. | 55 |
| abstract_inverted_index.management | 245 |
| abstract_inverted_index.monitoring | 51, 67, 87, 124 |
| abstract_inverted_index.processed, | 38 |
| abstract_inverted_index.prognostic | 23 |
| abstract_inverted_index.treatment. | 30, 248 |
| abstract_inverted_index.variables. | 234 |
| abstract_inverted_index.volunteers | 149 |
| abstract_inverted_index.(clinically | 176 |
| abstract_inverted_index.confirmed). | 177 |
| abstract_inverted_index.distinctive | 207 |
| abstract_inverted_index.dysfunction | 6 |
| abstract_inverted_index.enterprises | 240 |
| abstract_inverted_index.feasibility | 62 |
| abstract_inverted_index.management, | 91 |
| abstract_inverted_index.performance | 227 |
| abstract_inverted_index.post-stroke | 29, 247 |
| abstract_inverted_index.statistical | 179 |
| abstract_inverted_index.variability | 191 |
| abstract_inverted_index.accumulated, | 37 |
| abstract_inverted_index.investigated | 119 |
| abstract_inverted_index.95.6%) | 230 |
| abstract_inverted_index.complications | 9 |
| abstract_inverted_index.significantly | 206 |
| abstract_inverted_index.cardiovascular | 50 |
| abstract_inverted_index.classification | 226 |
| abstract_inverted_index.cyber-physical | 65, 85 |
| abstract_inverted_index.identification | 27 |
| abstract_inverted_index.rehabilitation | 140, 244 |
| abstract_inverted_index.single-channel | 165 |
| abstract_inverted_index.enterprise-level | 42 |
| abstract_inverted_index.Electrocardiogram | 0 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.99329977 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |