Binary Conditional Forecasts Article Swipe
Michael W. McCracken
,
Joseph McGillicuddy
,
Michael T. Owyang
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.14484571
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.14484571
While conditional forecasting has become prevalent both in the academic literature and in practice (e.g., bank stress testing, scenario forecasting), its applications typically focus on continuous variables. In this article, we merge elements from the literature on the construction and implementation of conditional forecasts with the literature on forecasting binary variables. We use the Qual-VAR, whose joint VAR-probit structure allows us to form conditional forecasts of the latent variable which can then be used to form probabilistic forecasts of the binary variable. We apply the model to forecasting recessions in real-time and investigate the role of monetary and oil shocks on the likelihood of two U.S. recessions.
Related Topics
Metadata
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.14484571
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3124368705
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3124368705Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.14484571Digital Object Identifier
- Title
-
Binary Conditional ForecastsWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Michael W. McCracken, Joseph McGillicuddy, Michael T. OwyangList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.14484571Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.14484571Direct OA link when available
- Concepts
-
Binary number, Econometrics, Statistics, Mathematics, ArithmeticTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3124368705 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.14484571 |
| ids.doi | https://doi.org/10.6084/m9.figshare.14484571 |
| ids.mag | 3124368705 |
| ids.openalex | https://openalex.org/W3124368705 |
| fwci | |
| type | dataset |
| title | Binary Conditional Forecasts |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11801 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.1316000074148178 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Reservoir Engineering and Simulation Methods |
| topics[1].id | https://openalex.org/T11890 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.12110000103712082 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Scientific Measurement and Uncertainty Evaluation |
| topics[2].id | https://openalex.org/T11918 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.11599999666213989 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Forecasting Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C48372109 |
| concepts[0].level | 2 |
| concepts[0].score | 0.4165472388267517 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[0].display_name | Binary number |
| concepts[1].id | https://openalex.org/C149782125 |
| concepts[1].level | 1 |
| concepts[1].score | 0.40417876839637756 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[1].display_name | Econometrics |
| concepts[2].id | https://openalex.org/C105795698 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3651643693447113 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[2].display_name | Statistics |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3283098638057709 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C94375191 |
| concepts[4].level | 1 |
| concepts[4].score | 0.10249251127243042 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[4].display_name | Arithmetic |
| keywords[0].id | https://openalex.org/keywords/binary-number |
| keywords[0].score | 0.4165472388267517 |
| keywords[0].display_name | Binary number |
| keywords[1].id | https://openalex.org/keywords/econometrics |
| keywords[1].score | 0.40417876839637756 |
| keywords[1].display_name | Econometrics |
| keywords[2].id | https://openalex.org/keywords/statistics |
| keywords[2].score | 0.3651643693447113 |
| keywords[2].display_name | Statistics |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.3283098638057709 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/arithmetic |
| keywords[4].score | 0.10249251127243042 |
| keywords[4].display_name | Arithmetic |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.14484571 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.14484571 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5013357244 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7004-1233 |
| authorships[0].author.display_name | Michael W. McCracken |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I77793887 |
| authorships[0].affiliations[0].raw_affiliation_string | Research Division, Federal Reserve Bank of St. Louis, Louis, MO |
| authorships[0].institutions[0].id | https://openalex.org/I77793887 |
| authorships[0].institutions[0].ror | https://ror.org/02skhjj30 |
| authorships[0].institutions[0].type | other |
| authorships[0].institutions[0].lineage | https://openalex.org/I1317239608, https://openalex.org/I77793887 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Federal Reserve Bank of St. Louis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michael W. McCracken |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Research Division, Federal Reserve Bank of St. Louis, Louis, MO |
| authorships[1].author.id | https://openalex.org/A5049353152 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Joseph McGillicuddy |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I77793887 |
| authorships[1].affiliations[0].raw_affiliation_string | Research Division, Federal Reserve Bank of St. Louis, Louis, MO |
| authorships[1].institutions[0].id | https://openalex.org/I77793887 |
| authorships[1].institutions[0].ror | https://ror.org/02skhjj30 |
| authorships[1].institutions[0].type | other |
| authorships[1].institutions[0].lineage | https://openalex.org/I1317239608, https://openalex.org/I77793887 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Federal Reserve Bank of St. Louis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Joseph McGillicuddy |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Research Division, Federal Reserve Bank of St. Louis, Louis, MO |
| authorships[2].author.id | https://openalex.org/A5033238882 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2109-3432 |
| authorships[2].author.display_name | Michael T. Owyang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I77793887 |
| authorships[2].affiliations[0].raw_affiliation_string | Research Division, Federal Reserve Bank of St. Louis, Louis, MO |
| authorships[2].institutions[0].id | https://openalex.org/I77793887 |
| authorships[2].institutions[0].ror | https://ror.org/02skhjj30 |
| authorships[2].institutions[0].type | other |
| authorships[2].institutions[0].lineage | https://openalex.org/I1317239608, https://openalex.org/I77793887 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Federal Reserve Bank of St. Louis |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Michael T. Owyang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Research Division, Federal Reserve Bank of St. Louis, Louis, MO |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.14484571 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Binary Conditional Forecasts |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11801 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.1316000074148178 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Reservoir Engineering and Simulation Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793, https://openalex.org/W4238204885 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.14484571 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14484571 |
| primary_location.id | doi:10.6084/m9.figshare.14484571 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14484571 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.We | 51, 82 |
| abstract_inverted_index.be | 72 |
| abstract_inverted_index.in | 7, 12, 89 |
| abstract_inverted_index.of | 41, 65, 78, 95, 103 |
| abstract_inverted_index.on | 24, 36, 47, 100 |
| abstract_inverted_index.to | 61, 74, 86 |
| abstract_inverted_index.us | 60 |
| abstract_inverted_index.we | 30 |
| abstract_inverted_index.and | 11, 39, 91, 97 |
| abstract_inverted_index.can | 70 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.its | 20 |
| abstract_inverted_index.oil | 98 |
| abstract_inverted_index.the | 8, 34, 37, 45, 53, 66, 79, 84, 93, 101 |
| abstract_inverted_index.two | 104 |
| abstract_inverted_index.use | 52 |
| abstract_inverted_index.U.S. | 105 |
| abstract_inverted_index.bank | 15 |
| abstract_inverted_index.both | 6 |
| abstract_inverted_index.form | 62, 75 |
| abstract_inverted_index.from | 33 |
| abstract_inverted_index.role | 94 |
| abstract_inverted_index.then | 71 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.used | 73 |
| abstract_inverted_index.with | 44 |
| abstract_inverted_index.While | 0 |
| abstract_inverted_index.apply | 83 |
| abstract_inverted_index.focus | 23 |
| abstract_inverted_index.joint | 56 |
| abstract_inverted_index.merge | 31 |
| abstract_inverted_index.model | 85 |
| abstract_inverted_index.which | 69 |
| abstract_inverted_index.whose | 55 |
| abstract_inverted_index.(e.g., | 14 |
| abstract_inverted_index.allows | 59 |
| abstract_inverted_index.become | 4 |
| abstract_inverted_index.binary | 49, 80 |
| abstract_inverted_index.latent | 67 |
| abstract_inverted_index.shocks | 99 |
| abstract_inverted_index.stress | 16 |
| abstract_inverted_index.academic | 9 |
| abstract_inverted_index.article, | 29 |
| abstract_inverted_index.elements | 32 |
| abstract_inverted_index.monetary | 96 |
| abstract_inverted_index.practice | 13 |
| abstract_inverted_index.scenario | 18 |
| abstract_inverted_index.testing, | 17 |
| abstract_inverted_index.variable | 68 |
| abstract_inverted_index.Qual-VAR, | 54 |
| abstract_inverted_index.forecasts | 43, 64, 77 |
| abstract_inverted_index.prevalent | 5 |
| abstract_inverted_index.real-time | 90 |
| abstract_inverted_index.structure | 58 |
| abstract_inverted_index.typically | 22 |
| abstract_inverted_index.variable. | 81 |
| abstract_inverted_index.VAR-probit | 57 |
| abstract_inverted_index.continuous | 25 |
| abstract_inverted_index.likelihood | 102 |
| abstract_inverted_index.literature | 10, 35, 46 |
| abstract_inverted_index.recessions | 88 |
| abstract_inverted_index.variables. | 26, 50 |
| abstract_inverted_index.conditional | 1, 42, 63 |
| abstract_inverted_index.forecasting | 2, 48, 87 |
| abstract_inverted_index.investigate | 92 |
| abstract_inverted_index.recessions. | 106 |
| abstract_inverted_index.applications | 21 |
| abstract_inverted_index.construction | 38 |
| abstract_inverted_index.forecasting), | 19 |
| abstract_inverted_index.probabilistic | 76 |
| abstract_inverted_index.implementation | 40 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |