Binary Conditional Forecasts* Article Swipe
Michael W. McCracken
,
Joseph McGillicuddy
,
Michael T. Owyang
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.14484571.v1
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.14484571.v1
While conditional forecasting has become prevalent both in the academic literature and in practice (e.g., bank stress testing, scenario forecasting), its applications typically focus on continuous variables. In this paper, we merge elements from the literature on the construction and implementation of conditional forecasts with the literature on forecasting binary variables. We use the Qual-VAR [Dueker (2005)], whose joint VAR-probit structure allows us to form conditional forecasts of the latent variable which can then be used to form probabilistic forecasts of the binary variable. We apply the model to forecasting recessions in real-time and investigate the role of monetary and oil shocks on the likelihood of two U.S. recessions.
Related Topics
Metadata
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.14484571.v1
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394404992
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394404992Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.14484571.v1Digital Object Identifier
- Title
-
Binary Conditional Forecasts*Work title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Michael W. McCracken, Joseph McGillicuddy, Michael T. OwyangList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.14484571.v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.14484571.v1Direct OA link when available
- Concepts
-
Binary number, Econometrics, Statistics, Mathematics, ArithmeticTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394404992 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.14484571.v1 |
| ids.doi | https://doi.org/10.6084/m9.figshare.14484571.v1 |
| ids.openalex | https://openalex.org/W4394404992 |
| fwci | |
| type | dataset |
| title | Binary Conditional Forecasts* |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11801 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.4668000042438507 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Reservoir Engineering and Simulation Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C48372109 |
| concepts[0].level | 2 |
| concepts[0].score | 0.42817339301109314 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[0].display_name | Binary number |
| concepts[1].id | https://openalex.org/C149782125 |
| concepts[1].level | 1 |
| concepts[1].score | 0.38093864917755127 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[1].display_name | Econometrics |
| concepts[2].id | https://openalex.org/C105795698 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3729872703552246 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[2].display_name | Statistics |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.31976577639579773 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C94375191 |
| concepts[4].level | 1 |
| concepts[4].score | 0.11298477649688721 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[4].display_name | Arithmetic |
| keywords[0].id | https://openalex.org/keywords/binary-number |
| keywords[0].score | 0.42817339301109314 |
| keywords[0].display_name | Binary number |
| keywords[1].id | https://openalex.org/keywords/econometrics |
| keywords[1].score | 0.38093864917755127 |
| keywords[1].display_name | Econometrics |
| keywords[2].id | https://openalex.org/keywords/statistics |
| keywords[2].score | 0.3729872703552246 |
| keywords[2].display_name | Statistics |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.31976577639579773 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/arithmetic |
| keywords[4].score | 0.11298477649688721 |
| keywords[4].display_name | Arithmetic |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.14484571.v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.14484571.v1 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5013357244 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7004-1233 |
| authorships[0].author.display_name | Michael W. McCracken |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michael W. McCracken |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049353152 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Joseph McGillicuddy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Joseph T. McGillicuddy |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5033238882 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2109-3432 |
| authorships[2].author.display_name | Michael T. Owyang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Michael T. Owyang |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.14484571.v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Binary Conditional Forecasts* |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11801 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.4668000042438507 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Reservoir Engineering and Simulation Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793, https://openalex.org/W4238204885 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.14484571.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14484571.v1 |
| primary_location.id | doi:10.6084/m9.figshare.14484571.v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14484571.v1 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.We | 51, 84 |
| abstract_inverted_index.be | 74 |
| abstract_inverted_index.in | 7, 12, 91 |
| abstract_inverted_index.of | 41, 67, 80, 97, 105 |
| abstract_inverted_index.on | 24, 36, 47, 102 |
| abstract_inverted_index.to | 63, 76, 88 |
| abstract_inverted_index.us | 62 |
| abstract_inverted_index.we | 30 |
| abstract_inverted_index.and | 11, 39, 93, 99 |
| abstract_inverted_index.can | 72 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.its | 20 |
| abstract_inverted_index.oil | 100 |
| abstract_inverted_index.the | 8, 34, 37, 45, 53, 68, 81, 86, 95, 103 |
| abstract_inverted_index.two | 106 |
| abstract_inverted_index.use | 52 |
| abstract_inverted_index.U.S. | 107 |
| abstract_inverted_index.bank | 15 |
| abstract_inverted_index.both | 6 |
| abstract_inverted_index.form | 64, 77 |
| abstract_inverted_index.from | 33 |
| abstract_inverted_index.role | 96 |
| abstract_inverted_index.then | 73 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.used | 75 |
| abstract_inverted_index.with | 44 |
| abstract_inverted_index.While | 0 |
| abstract_inverted_index.apply | 85 |
| abstract_inverted_index.focus | 23 |
| abstract_inverted_index.joint | 58 |
| abstract_inverted_index.merge | 31 |
| abstract_inverted_index.model | 87 |
| abstract_inverted_index.which | 71 |
| abstract_inverted_index.whose | 57 |
| abstract_inverted_index.(e.g., | 14 |
| abstract_inverted_index.allows | 61 |
| abstract_inverted_index.become | 4 |
| abstract_inverted_index.binary | 49, 82 |
| abstract_inverted_index.latent | 69 |
| abstract_inverted_index.paper, | 29 |
| abstract_inverted_index.shocks | 101 |
| abstract_inverted_index.stress | 16 |
| abstract_inverted_index.[Dueker | 55 |
| abstract_inverted_index.(2005)], | 56 |
| abstract_inverted_index.Qual-VAR | 54 |
| abstract_inverted_index.academic | 9 |
| abstract_inverted_index.elements | 32 |
| abstract_inverted_index.monetary | 98 |
| abstract_inverted_index.practice | 13 |
| abstract_inverted_index.scenario | 18 |
| abstract_inverted_index.testing, | 17 |
| abstract_inverted_index.variable | 70 |
| abstract_inverted_index.forecasts | 43, 66, 79 |
| abstract_inverted_index.prevalent | 5 |
| abstract_inverted_index.real-time | 92 |
| abstract_inverted_index.structure | 60 |
| abstract_inverted_index.typically | 22 |
| abstract_inverted_index.variable. | 83 |
| abstract_inverted_index.VAR-probit | 59 |
| abstract_inverted_index.continuous | 25 |
| abstract_inverted_index.likelihood | 104 |
| abstract_inverted_index.literature | 10, 35, 46 |
| abstract_inverted_index.recessions | 90 |
| abstract_inverted_index.variables. | 26, 50 |
| abstract_inverted_index.conditional | 1, 42, 65 |
| abstract_inverted_index.forecasting | 2, 48, 89 |
| abstract_inverted_index.investigate | 94 |
| abstract_inverted_index.recessions. | 108 |
| abstract_inverted_index.applications | 21 |
| abstract_inverted_index.construction | 38 |
| abstract_inverted_index.forecasting), | 19 |
| abstract_inverted_index.probabilistic | 78 |
| abstract_inverted_index.implementation | 40 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |