Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality reduction, clustering, and lineage inference Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.12688/f1000research.12122.1
Novel single-cell transcriptome sequencing assays allow researchers to measure gene expression levels at the resolution of single cells and offer the unprecendented opportunity to investigate at the molecular level fundamental biological questions, such as stem cell differentiation or the discovery and characterization of rare cell types. However, such assays raise challenging statistical and computational questions and require the development of novel methodology and software. Using stem cell differentiation in the mouse olfactory epithelium as a case study, this integrated workflow provides a step-by-step tutorial to the methodology and associated software for the following four main tasks: (1) dimensionality reduction accounting for zero inflation and over dispersion and adjusting for gene and cell-level covariates; (2) cell clustering using resampling-based sequential ensemble clustering; (3) inference of cell lineages and pseudotimes; and (4) differential expression analysis along lineages.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.12688/f1000research.12122.1
- https://f1000research.com/articles/6-1158/v1/pdf
- OA Status
- gold
- Cited By
- 16
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2737169389
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2737169389Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.12688/f1000research.12122.1Digital Object Identifier
- Title
-
Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality reduction, clustering, and lineage inferenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-07-21Full publication date if available
- Authors
-
Fanny Perraudeau, Davide Risso, Kelly Street, Elizabeth Purdom, Sandrine DudoitList of authors in order
- Landing page
-
https://doi.org/10.12688/f1000research.12122.1Publisher landing page
- PDF URL
-
https://f1000research.com/articles/6-1158/v1/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://f1000research.com/articles/6-1158/v1/pdfDirect OA link when available
- Concepts
-
Bioconductor, Computational biology, Biology, Cluster analysis, Dimensionality reduction, Transcriptome, Inference, Computer science, Data mining, Bioinformatics, Gene, Gene expression, Genetics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 2, 2021: 2, 2020: 3, 2019: 2Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2737169389 |
|---|---|
| doi | https://doi.org/10.12688/f1000research.12122.1 |
| ids.doi | https://doi.org/10.12688/f1000research.12122.1 |
| ids.mag | 2737169389 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/28868140 |
| ids.openalex | https://openalex.org/W2737169389 |
| fwci | 1.4697618 |
| type | preprint |
| title | Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality reduction, clustering, and lineage inference |
| awards[0].id | https://openalex.org/G454515757 |
| awards[0].funder_id | https://openalex.org/F4320337348 |
| awards[0].display_name | |
| awards[0].funder_award_id | T32000047 |
| awards[0].funder_display_name | National Human Genome Research Institute |
| awards[1].id | https://openalex.org/G1413031419 |
| awards[1].funder_id | https://openalex.org/F4320332161 |
| awards[1].display_name | |
| awards[1].funder_award_id | U01MH105979 |
| awards[1].funder_display_name | National Institutes of Health |
| biblio.issue | |
| biblio.volume | 6 |
| biblio.last_page | 1158 |
| biblio.first_page | 1158 |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T10885 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9894000291824341 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene expression and cancer classification |
| topics[2].id | https://openalex.org/T10015 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9642999768257141 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Genomics and Phylogenetic Studies |
| funders[0].id | https://openalex.org/F4320332161 |
| funders[0].ror | https://ror.org/01cwqze88 |
| funders[0].display_name | National Institutes of Health |
| funders[1].id | https://openalex.org/F4320337348 |
| funders[1].ror | https://ror.org/00baak391 |
| funders[1].display_name | National Human Genome Research Institute |
| is_xpac | False |
| apc_list.value | 1350 |
| apc_list.currency | USD |
| apc_list.value_usd | 1350 |
| apc_paid.value | 1350 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1350 |
| concepts[0].id | https://openalex.org/C2779694297 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7539991140365601 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2888953 |
| concepts[0].display_name | Bioconductor |
| concepts[1].id | https://openalex.org/C70721500 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6226311922073364 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[1].display_name | Computational biology |
| concepts[2].id | https://openalex.org/C86803240 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5995476245880127 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[2].display_name | Biology |
| concepts[3].id | https://openalex.org/C73555534 |
| concepts[3].level | 2 |
| concepts[3].score | 0.586837112903595 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[3].display_name | Cluster analysis |
| concepts[4].id | https://openalex.org/C70518039 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4879316985607147 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[4].display_name | Dimensionality reduction |
| concepts[5].id | https://openalex.org/C162317418 |
| concepts[5].level | 4 |
| concepts[5].score | 0.44342273473739624 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q252857 |
| concepts[5].display_name | Transcriptome |
| concepts[6].id | https://openalex.org/C2776214188 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41729050874710083 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[6].display_name | Inference |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4073476791381836 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3562723398208618 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C60644358 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34774065017700195 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[9].display_name | Bioinformatics |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3265218138694763 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C150194340 |
| concepts[11].level | 3 |
| concepts[11].score | 0.27138805389404297 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[11].display_name | Gene expression |
| concepts[12].id | https://openalex.org/C54355233 |
| concepts[12].level | 1 |
| concepts[12].score | 0.24618315696716309 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[12].display_name | Genetics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1766262650489807 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/bioconductor |
| keywords[0].score | 0.7539991140365601 |
| keywords[0].display_name | Bioconductor |
| keywords[1].id | https://openalex.org/keywords/computational-biology |
| keywords[1].score | 0.6226311922073364 |
| keywords[1].display_name | Computational biology |
| keywords[2].id | https://openalex.org/keywords/biology |
| keywords[2].score | 0.5995476245880127 |
| keywords[2].display_name | Biology |
| keywords[3].id | https://openalex.org/keywords/cluster-analysis |
| keywords[3].score | 0.586837112903595 |
| keywords[3].display_name | Cluster analysis |
| keywords[4].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[4].score | 0.4879316985607147 |
| keywords[4].display_name | Dimensionality reduction |
| keywords[5].id | https://openalex.org/keywords/transcriptome |
| keywords[5].score | 0.44342273473739624 |
| keywords[5].display_name | Transcriptome |
| keywords[6].id | https://openalex.org/keywords/inference |
| keywords[6].score | 0.41729050874710083 |
| keywords[6].display_name | Inference |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.4073476791381836 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3562723398208618 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/bioinformatics |
| keywords[9].score | 0.34774065017700195 |
| keywords[9].display_name | Bioinformatics |
| keywords[10].id | https://openalex.org/keywords/gene |
| keywords[10].score | 0.3265218138694763 |
| keywords[10].display_name | Gene |
| keywords[11].id | https://openalex.org/keywords/gene-expression |
| keywords[11].score | 0.27138805389404297 |
| keywords[11].display_name | Gene expression |
| keywords[12].id | https://openalex.org/keywords/genetics |
| keywords[12].score | 0.24618315696716309 |
| keywords[12].display_name | Genetics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.1766262650489807 |
| keywords[13].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.12688/f1000research.12122.1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210239046 |
| locations[0].source.issn | 2046-1402 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2046-1402 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | F1000Research |
| locations[0].source.host_organization | https://openalex.org/P4310320357 |
| locations[0].source.host_organization_name | Faculty of 1000 |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320357 |
| locations[0].source.host_organization_lineage_names | Faculty of 1000 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://f1000research.com/articles/6-1158/v1/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | F1000Research |
| locations[0].landing_page_url | https://doi.org/10.12688/f1000research.12122.1 |
| locations[1].id | pmid:28868140 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | F1000Research |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/28868140 |
| locations[2].id | pmh:ark:/13030/qt1qb6k31b |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | |
| locations[3].id | pmh:oai:doaj.org/article:b7027405ba364e98a0cffd89a93603e2 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | F1000Research, Vol 6 (2017) |
| locations[3].landing_page_url | https://doaj.org/article/b7027405ba364e98a0cffd89a93603e2 |
| locations[4].id | pmh:oai:escholarship.org/ark:/13030/qt1qb6k31b |
| locations[4].is_oa | False |
| locations[4].source.id | https://openalex.org/S4306400115 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | eScholarship (California Digital Library) |
| locations[4].source.host_organization | https://openalex.org/I2801248553 |
| locations[4].source.host_organization_name | California Digital Library |
| locations[4].source.host_organization_lineage | https://openalex.org/I2801248553 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://escholarship.org/uc/item/1qb6k31b |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:5558107 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | cc-by |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/cc-by |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | F1000Res |
| locations[5].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5558107 |
| locations[6].id | pmh:oai:www.research.unipd.it:11577/3280598 |
| locations[6].is_oa | True |
| locations[6].source.id | https://openalex.org/S4306402448 |
| locations[6].source.issn | |
| locations[6].source.type | repository |
| locations[6].source.is_oa | False |
| locations[6].source.issn_l | |
| locations[6].source.is_core | False |
| locations[6].source.is_in_doaj | False |
| locations[6].source.display_name | Padua Research Archive (University of Padua) |
| locations[6].source.host_organization | https://openalex.org/I138689650 |
| locations[6].source.host_organization_name | University of Padua |
| locations[6].source.host_organization_lineage | https://openalex.org/I138689650 |
| locations[6].license | cc-by |
| locations[6].pdf_url | |
| locations[6].version | submittedVersion |
| locations[6].raw_type | info:eu-repo/semantics/article |
| locations[6].license_id | https://openalex.org/licenses/cc-by |
| locations[6].is_accepted | False |
| locations[6].is_published | False |
| locations[6].raw_source_name | |
| locations[6].landing_page_url | http://hdl.handle.net/11577/3280598 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5011203484 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1478-6983 |
| authorships[0].author.display_name | Fanny Perraudeau |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[0].affiliations[0].raw_affiliation_string | Graduate Group in Biostatistics, University of California, Berkeley, Berkeley, CA, 94720 |
| authorships[0].institutions[0].id | https://openalex.org/I95457486 |
| authorships[0].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Berkeley |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fanny Perraudeau |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Graduate Group in Biostatistics, University of California, Berkeley, Berkeley, CA, 94720 |
| authorships[1].author.id | https://openalex.org/A5088632823 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8508-5012 |
| authorships[1].author.display_name | Davide Risso |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205783295, https://openalex.org/I4387153466 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, 10065 |
| authorships[1].institutions[0].id | https://openalex.org/I205783295 |
| authorships[1].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Cornell University |
| authorships[1].institutions[1].id | https://openalex.org/I4387153466 |
| authorships[1].institutions[1].ror | https://ror.org/02r109517 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I205783295, https://openalex.org/I4387153466 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Weill Cornell Medicine |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Davide Risso |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, 10065 |
| authorships[2].author.id | https://openalex.org/A5006289887 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6379-5013 |
| authorships[2].author.display_name | Kelly Street |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[2].affiliations[0].raw_affiliation_string | Graduate Group in Biostatistics, University of California, Berkeley, Berkeley, CA, 94720 |
| authorships[2].institutions[0].id | https://openalex.org/I95457486 |
| authorships[2].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Berkeley |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kelly Street |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Graduate Group in Biostatistics, University of California, Berkeley, Berkeley, CA, 94720 |
| authorships[3].author.id | https://openalex.org/A5044209711 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9455-7990 |
| authorships[3].author.display_name | Elizabeth Purdom |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Statistics, University of California, Berkeley, Berkeley, CA, 94720 |
| authorships[3].institutions[0].id | https://openalex.org/I95457486 |
| authorships[3].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Berkeley |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Elizabeth Purdom |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Statistics, University of California, Berkeley, Berkeley, CA, 94720 |
| authorships[4].author.id | https://openalex.org/A5018207168 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6069-8629 |
| authorships[4].author.display_name | Sandrine Dudoit |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Biostatistics, University of California, Berkeley, Berkeley, CA, 94720 |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I95457486 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Statistics, University of California, Berkeley, Berkeley, CA, 94720 |
| authorships[4].institutions[0].id | https://openalex.org/I95457486 |
| authorships[4].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of California, Berkeley |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sandrine Dudoit |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Statistics, University of California, Berkeley, Berkeley, CA, 94720, Division of Biostatistics, University of California, Berkeley, Berkeley, CA, 94720 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://f1000research.com/articles/6-1158/v1/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality reduction, clustering, and lineage inference |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W2135678793, https://openalex.org/W2011682793, https://openalex.org/W2109288169, https://openalex.org/W2157684052, https://openalex.org/W2978247079, https://openalex.org/W2140163842, https://openalex.org/W2148708580, https://openalex.org/W2166887457, https://openalex.org/W2982252354, https://openalex.org/W2154126264 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2018 |
| counts_by_year[5].cited_by_count | 5 |
| counts_by_year[6].year | 2017 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 7 |
| best_oa_location.id | doi:10.12688/f1000research.12122.1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210239046 |
| best_oa_location.source.issn | 2046-1402 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2046-1402 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | F1000Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310320357 |
| best_oa_location.source.host_organization_name | Faculty of 1000 |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320357 |
| best_oa_location.source.host_organization_lineage_names | Faculty of 1000 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://f1000research.com/articles/6-1158/v1/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | F1000Research |
| best_oa_location.landing_page_url | https://doi.org/10.12688/f1000research.12122.1 |
| primary_location.id | doi:10.12688/f1000research.12122.1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210239046 |
| primary_location.source.issn | 2046-1402 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2046-1402 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | F1000Research |
| primary_location.source.host_organization | https://openalex.org/P4310320357 |
| primary_location.source.host_organization_name | Faculty of 1000 |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320357 |
| primary_location.source.host_organization_lineage_names | Faculty of 1000 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://f1000research.com/articles/6-1158/v1/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | F1000Research |
| primary_location.landing_page_url | https://doi.org/10.12688/f1000research.12122.1 |
| publication_date | 2017-07-21 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2602582876, https://openalex.org/W2613078538, https://openalex.org/W1973094248, https://openalex.org/W2540833380, https://openalex.org/W2951158909, https://openalex.org/W3208892192, https://openalex.org/W2152692691, https://openalex.org/W2606690922, https://openalex.org/W2607806728, https://openalex.org/W2105860794, https://openalex.org/W2783644856 |
| referenced_works_count | 11 |
| abstract_inverted_index.a | 74, 81 |
| abstract_inverted_index.as | 33, 73 |
| abstract_inverted_index.at | 12, 25 |
| abstract_inverted_index.in | 68 |
| abstract_inverted_index.of | 15, 42, 59, 123 |
| abstract_inverted_index.or | 37 |
| abstract_inverted_index.to | 7, 23, 84 |
| abstract_inverted_index.(1) | 96 |
| abstract_inverted_index.(2) | 113 |
| abstract_inverted_index.(3) | 121 |
| abstract_inverted_index.(4) | 129 |
| abstract_inverted_index.and | 18, 40, 52, 55, 62, 87, 103, 106, 110, 126, 128 |
| abstract_inverted_index.for | 90, 100, 108 |
| abstract_inverted_index.the | 13, 20, 26, 38, 57, 69, 85, 91 |
| abstract_inverted_index.case | 75 |
| abstract_inverted_index.cell | 35, 44, 66, 114, 124 |
| abstract_inverted_index.four | 93 |
| abstract_inverted_index.gene | 9, 109 |
| abstract_inverted_index.main | 94 |
| abstract_inverted_index.over | 104 |
| abstract_inverted_index.rare | 43 |
| abstract_inverted_index.stem | 34, 65 |
| abstract_inverted_index.such | 32, 47 |
| abstract_inverted_index.this | 77 |
| abstract_inverted_index.zero | 101 |
| abstract_inverted_index.Using | 64 |
| abstract_inverted_index.allow | 5 |
| abstract_inverted_index.along | 133 |
| abstract_inverted_index.cells | 17 |
| abstract_inverted_index.level | 28 |
| abstract_inverted_index.mouse | 70 |
| abstract_inverted_index.novel | 60 |
| abstract_inverted_index.offer | 19 |
| abstract_inverted_index.raise | 49 |
| abstract_inverted_index.using | 116 |
| abstract_inverted_index.assays | 4, 48 |
| abstract_inverted_index.levels | 11 |
| abstract_inverted_index.single | 16 |
| abstract_inverted_index.study, | 76 |
| abstract_inverted_index.tasks: | 95 |
| abstract_inverted_index.types. | 45 |
| abstract_inverted_index.measure | 8 |
| abstract_inverted_index.require | 56 |
| abstract_inverted_index.However, | 46 |
| abstract_inverted_index.analysis | 132 |
| abstract_inverted_index.ensemble | 119 |
| abstract_inverted_index.lineages | 125 |
| abstract_inverted_index.provides | 80 |
| abstract_inverted_index.software | 89 |
| abstract_inverted_index.tutorial | 83 |
| abstract_inverted_index.workflow | 79 |
| abstract_inverted_index.adjusting | 107 |
| abstract_inverted_index.discovery | 39 |
| abstract_inverted_index.following | 92 |
| abstract_inverted_index.inference | 122 |
| abstract_inverted_index.inflation | 102 |
| abstract_inverted_index.molecular | 27 |
| abstract_inverted_index.olfactory | 71 |
| abstract_inverted_index.questions | 54 |
| abstract_inverted_index.reduction | 98 |
| abstract_inverted_index.software. | 63 |
| abstract_inverted_index.accounting | 99 |
| abstract_inverted_index.associated | 88 |
| abstract_inverted_index.biological | 30 |
| abstract_inverted_index.cell-level | 111 |
| abstract_inverted_index.clustering | 115 |
| abstract_inverted_index.dispersion | 105 |
| abstract_inverted_index.epithelium | 72 |
| abstract_inverted_index.expression | 10, 131 |
| abstract_inverted_index.integrated | 78 |
| abstract_inverted_index.questions, | 31 |
| abstract_inverted_index.resolution | 14 |
| abstract_inverted_index.sequencing | 3 |
| abstract_inverted_index.sequential | 118 |
| abstract_inverted_index.challenging | 50 |
| abstract_inverted_index.clustering; | 120 |
| abstract_inverted_index.covariates; | 112 |
| abstract_inverted_index.development | 58 |
| abstract_inverted_index.fundamental | 29 |
| abstract_inverted_index.investigate | 24 |
| abstract_inverted_index.methodology | 61, 86 |
| abstract_inverted_index.opportunity | 22 |
| abstract_inverted_index.researchers | 6 |
| abstract_inverted_index.single-cell | 1 |
| abstract_inverted_index.statistical | 51 |
| abstract_inverted_index.<ns4:p>Novel | 0 |
| abstract_inverted_index.differential | 130 |
| abstract_inverted_index.pseudotimes; | 127 |
| abstract_inverted_index.step-by-step | 82 |
| abstract_inverted_index.computational | 53 |
| abstract_inverted_index.transcriptome | 2 |
| abstract_inverted_index.dimensionality | 97 |
| abstract_inverted_index.unprecendented | 21 |
| abstract_inverted_index.differentiation | 36, 67 |
| abstract_inverted_index.characterization | 41 |
| abstract_inverted_index.resampling-based | 117 |
| abstract_inverted_index.lineages.</ns4:p> | 134 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.78227668 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |