Biology-inspired joint distribution neurons based on Hierarchical Correlation Reconstruction allowing for multidirectional neural networks Article Swipe
Biological neural networks seem qualitatively superior (e.g. in learning, flexibility, robustness) to current artificial like Multi-Layer Perceptron (MLP) or Kolmogorov-Arnold Network (KAN). Simultaneously, in contrast to them: biological have fundamentally multidirectional signal propagation \cite{axon}, also of probability distributions e.g. for uncertainty estimation, and are believed not being able to use standard backpropagation training \cite{backprop}. There are proposed novel artificial neurons based on HCR (Hierarchical Correlation Reconstruction) allowing to remove the above low level differences: with neurons containing local joint distribution model (of its connections), representing joint density on normalized variables as just linear combination of $(f_\mathbf{j})$ orthonormal polynomials: $ρ(\mathbf{x})=\sum_{\mathbf{j}\in B} a_\mathbf{j} f_\mathbf{j}(\mathbf{x})$ for $\mathbf{x} \in [0,1]^d$ and $B\subset \mathbb{N}^d$ some chosen basis. By various index summations of such $(a_\mathbf{j})_{\mathbf{j}\in B}$ tensor as neuron parameters, we get simple formulas for e.g. conditional expected values for propagation in any direction, like $E[x|y,z]$, $E[y|x]$, which degenerate to KAN-like parametrization if restricting to pairwise dependencies. Such HCR network can also propagate probability distributions (also joint) like $ρ(y,z|x)$. It also allows for additional training approaches, like direct $(a_\mathbf{j})$ estimation, through tensor decomposition, or more biologically plausible information bottleneck training: layers directly influencing only neighbors, optimizing content to maximize information about the next layer, and minimizing about the previous to remove noise, extract crucial information.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.05097
- https://arxiv.org/pdf/2405.05097
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396817055
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396817055Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.05097Digital Object Identifier
- Title
-
Biology-inspired joint distribution neurons based on Hierarchical Correlation Reconstruction allowing for multidirectional neural networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-08Full publication date if available
- Authors
-
Jarek DudaList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.05097Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.05097Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.05097Direct OA link when available
- Concepts
-
Joint (building), Artificial neural network, Joint probability distribution, Correlation, Distribution (mathematics), Artificial intelligence, Computer science, Biology, Neuroscience, Statistical physics, Pattern recognition (psychology), Mathematics, Physics, Statistics, Engineering, Geometry, Mathematical analysis, Architectural engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396817055 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.05097 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.05097 |
| ids.openalex | https://openalex.org/W4396817055 |
| fwci | |
| type | preprint |
| title | Biology-inspired joint distribution neurons based on Hierarchical Correlation Reconstruction allowing for multidirectional neural networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9312000274658203 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C18555067 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6053537130355835 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[0].display_name | Joint (building) |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5633875727653503 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C18653775 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5444745421409607 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1333358 |
| concepts[2].display_name | Joint probability distribution |
| concepts[3].id | https://openalex.org/C117220453 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5118209719657898 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[3].display_name | Correlation |
| concepts[4].id | https://openalex.org/C110121322 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49755433201789856 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q865811 |
| concepts[4].display_name | Distribution (mathematics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46623584628105164 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.43907010555267334 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.40592196583747864 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C169760540 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3657137155532837 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[8].display_name | Neuroscience |
| concepts[9].id | https://openalex.org/C121864883 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3230346441268921 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[9].display_name | Statistical physics |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3219359517097473 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2059631049633026 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.15168103575706482 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.13726380467414856 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.12325164675712585 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09948083758354187 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.05831533670425415 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C170154142 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[17].display_name | Architectural engineering |
| keywords[0].id | https://openalex.org/keywords/joint |
| keywords[0].score | 0.6053537130355835 |
| keywords[0].display_name | Joint (building) |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.5633875727653503 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/joint-probability-distribution |
| keywords[2].score | 0.5444745421409607 |
| keywords[2].display_name | Joint probability distribution |
| keywords[3].id | https://openalex.org/keywords/correlation |
| keywords[3].score | 0.5118209719657898 |
| keywords[3].display_name | Correlation |
| keywords[4].id | https://openalex.org/keywords/distribution |
| keywords[4].score | 0.49755433201789856 |
| keywords[4].display_name | Distribution (mathematics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.46623584628105164 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.43907010555267334 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.40592196583747864 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/neuroscience |
| keywords[8].score | 0.3657137155532837 |
| keywords[8].display_name | Neuroscience |
| keywords[9].id | https://openalex.org/keywords/statistical-physics |
| keywords[9].score | 0.3230346441268921 |
| keywords[9].display_name | Statistical physics |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3219359517097473 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2059631049633026 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.15168103575706482 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.13726380467414856 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.12325164675712585 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/geometry |
| keywords[15].score | 0.09948083758354187 |
| keywords[15].display_name | Geometry |
| keywords[16].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[16].score | 0.05831533670425415 |
| keywords[16].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.05097 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.05097 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.05097 |
| locations[1].id | doi:10.48550/arxiv.2405.05097 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.05097 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5109420627 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jarek Duda |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Duda, Jarek |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.05097 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-05-11T00:00:00 |
| display_name | Biology-inspired joint distribution neurons based on Hierarchical Correlation Reconstruction allowing for multidirectional neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9312000274658203 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W1996130883, https://openalex.org/W2748574964, https://openalex.org/W2888483922, https://openalex.org/W4396737233, https://openalex.org/W2367747139, https://openalex.org/W4391102217, https://openalex.org/W2566187525, https://openalex.org/W2566334511, https://openalex.org/W2595897316, https://openalex.org/W2348570375 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.05097 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.05097 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.05097 |
| primary_location.id | pmh:oai:arXiv.org:2405.05097 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.05097 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.05097 |
| publication_date | 2024-05-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.By | 112 |
| abstract_inverted_index.B} | 99 |
| abstract_inverted_index.It | 163 |
| abstract_inverted_index.as | 90, 121 |
| abstract_inverted_index.if | 146 |
| abstract_inverted_index.in | 7, 23, 135 |
| abstract_inverted_index.of | 35, 94, 116 |
| abstract_inverted_index.on | 61, 87 |
| abstract_inverted_index.or | 18, 177 |
| abstract_inverted_index.to | 11, 25, 48, 67, 143, 148, 191, 203 |
| abstract_inverted_index.we | 124 |
| abstract_inverted_index.(of | 81 |
| abstract_inverted_index.B}$ | 119 |
| abstract_inverted_index.HCR | 62, 152 |
| abstract_inverted_index.\in | 104 |
| abstract_inverted_index.and | 42, 106, 198 |
| abstract_inverted_index.any | 136 |
| abstract_inverted_index.are | 43, 55 |
| abstract_inverted_index.can | 154 |
| abstract_inverted_index.for | 39, 102, 128, 133, 166 |
| abstract_inverted_index.get | 125 |
| abstract_inverted_index.its | 82 |
| abstract_inverted_index.low | 71 |
| abstract_inverted_index.not | 45 |
| abstract_inverted_index.the | 69, 195, 201 |
| abstract_inverted_index.use | 49 |
| abstract_inverted_index.Such | 151 |
| abstract_inverted_index.able | 47 |
| abstract_inverted_index.also | 34, 155, 164 |
| abstract_inverted_index.e.g. | 38, 129 |
| abstract_inverted_index.have | 28 |
| abstract_inverted_index.just | 91 |
| abstract_inverted_index.like | 14, 138, 161, 170 |
| abstract_inverted_index.more | 178 |
| abstract_inverted_index.next | 196 |
| abstract_inverted_index.only | 187 |
| abstract_inverted_index.seem | 3 |
| abstract_inverted_index.some | 109 |
| abstract_inverted_index.such | 117 |
| abstract_inverted_index.with | 74 |
| abstract_inverted_index.(MLP) | 17 |
| abstract_inverted_index.(also | 159 |
| abstract_inverted_index.(e.g. | 6 |
| abstract_inverted_index.There | 54 |
| abstract_inverted_index.about | 194, 200 |
| abstract_inverted_index.above | 70 |
| abstract_inverted_index.based | 60 |
| abstract_inverted_index.being | 46 |
| abstract_inverted_index.index | 114 |
| abstract_inverted_index.joint | 78, 85 |
| abstract_inverted_index.level | 72 |
| abstract_inverted_index.local | 77 |
| abstract_inverted_index.model | 80 |
| abstract_inverted_index.novel | 57 |
| abstract_inverted_index.them: | 26 |
| abstract_inverted_index.which | 141 |
| abstract_inverted_index.(KAN). | 21 |
| abstract_inverted_index.allows | 165 |
| abstract_inverted_index.basis. | 111 |
| abstract_inverted_index.chosen | 110 |
| abstract_inverted_index.direct | 171 |
| abstract_inverted_index.joint) | 160 |
| abstract_inverted_index.layer, | 197 |
| abstract_inverted_index.layers | 184 |
| abstract_inverted_index.linear | 92 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.neuron | 122 |
| abstract_inverted_index.noise, | 205 |
| abstract_inverted_index.remove | 68, 204 |
| abstract_inverted_index.signal | 31 |
| abstract_inverted_index.simple | 126 |
| abstract_inverted_index.tensor | 120, 175 |
| abstract_inverted_index.values | 132 |
| abstract_inverted_index.Network | 20 |
| abstract_inverted_index.content | 190 |
| abstract_inverted_index.crucial | 207 |
| abstract_inverted_index.current | 12 |
| abstract_inverted_index.density | 86 |
| abstract_inverted_index.extract | 206 |
| abstract_inverted_index.network | 153 |
| abstract_inverted_index.neurons | 59, 75 |
| abstract_inverted_index.through | 174 |
| abstract_inverted_index.various | 113 |
| abstract_inverted_index.KAN-like | 144 |
| abstract_inverted_index.[0,1]^d$ | 105 |
| abstract_inverted_index.allowing | 66 |
| abstract_inverted_index.believed | 44 |
| abstract_inverted_index.contrast | 24 |
| abstract_inverted_index.directly | 185 |
| abstract_inverted_index.expected | 131 |
| abstract_inverted_index.formulas | 127 |
| abstract_inverted_index.maximize | 192 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.pairwise | 149 |
| abstract_inverted_index.previous | 202 |
| abstract_inverted_index.proposed | 56 |
| abstract_inverted_index.standard | 50 |
| abstract_inverted_index.superior | 5 |
| abstract_inverted_index.training | 52, 168 |
| abstract_inverted_index.$B\subset | 107 |
| abstract_inverted_index.$E[y|x]$, | 140 |
| abstract_inverted_index.learning, | 8 |
| abstract_inverted_index.plausible | 180 |
| abstract_inverted_index.propagate | 156 |
| abstract_inverted_index.training: | 183 |
| abstract_inverted_index.variables | 89 |
| abstract_inverted_index.Biological | 0 |
| abstract_inverted_index.Perceptron | 16 |
| abstract_inverted_index.additional | 167 |
| abstract_inverted_index.artificial | 13, 58 |
| abstract_inverted_index.biological | 27 |
| abstract_inverted_index.bottleneck | 182 |
| abstract_inverted_index.containing | 76 |
| abstract_inverted_index.degenerate | 142 |
| abstract_inverted_index.direction, | 137 |
| abstract_inverted_index.minimizing | 199 |
| abstract_inverted_index.neighbors, | 188 |
| abstract_inverted_index.normalized | 88 |
| abstract_inverted_index.optimizing | 189 |
| abstract_inverted_index.summations | 115 |
| abstract_inverted_index.$E[x|y,z]$, | 139 |
| abstract_inverted_index.$\mathbf{x} | 103 |
| abstract_inverted_index.Correlation | 64 |
| abstract_inverted_index.Multi-Layer | 15 |
| abstract_inverted_index.approaches, | 169 |
| abstract_inverted_index.combination | 93 |
| abstract_inverted_index.conditional | 130 |
| abstract_inverted_index.estimation, | 41, 173 |
| abstract_inverted_index.influencing | 186 |
| abstract_inverted_index.information | 181, 193 |
| abstract_inverted_index.orthonormal | 96 |
| abstract_inverted_index.parameters, | 123 |
| abstract_inverted_index.probability | 36, 157 |
| abstract_inverted_index.propagation | 32, 134 |
| abstract_inverted_index.restricting | 147 |
| abstract_inverted_index.robustness) | 10 |
| abstract_inverted_index.uncertainty | 40 |
| abstract_inverted_index.$ρ(y,z|x)$. | 162 |
| abstract_inverted_index.\cite{axon}, | 33 |
| abstract_inverted_index.a_\mathbf{j} | 100 |
| abstract_inverted_index.biologically | 179 |
| abstract_inverted_index.differences: | 73 |
| abstract_inverted_index.distribution | 79 |
| abstract_inverted_index.flexibility, | 9 |
| abstract_inverted_index.information. | 208 |
| abstract_inverted_index.polynomials: | 97 |
| abstract_inverted_index.representing | 84 |
| abstract_inverted_index.(Hierarchical | 63 |
| abstract_inverted_index.\mathbb{N}^d$ | 108 |
| abstract_inverted_index.connections), | 83 |
| abstract_inverted_index.dependencies. | 150 |
| abstract_inverted_index.distributions | 37, 158 |
| abstract_inverted_index.fundamentally | 29 |
| abstract_inverted_index.qualitatively | 4 |
| abstract_inverted_index.decomposition, | 176 |
| abstract_inverted_index.Reconstruction) | 65 |
| abstract_inverted_index.Simultaneously, | 22 |
| abstract_inverted_index.backpropagation | 51 |
| abstract_inverted_index.parametrization | 145 |
| abstract_inverted_index.$(a_\mathbf{j})$ | 172 |
| abstract_inverted_index.$(f_\mathbf{j})$ | 95 |
| abstract_inverted_index.\cite{backprop}. | 53 |
| abstract_inverted_index.multidirectional | 30 |
| abstract_inverted_index.Kolmogorov-Arnold | 19 |
| abstract_inverted_index.f_\mathbf{j}(\mathbf{x})$ | 101 |
| abstract_inverted_index.$(a_\mathbf{j})_{\mathbf{j}\in | 118 |
| abstract_inverted_index.$ρ(\mathbf{x})=\sum_{\mathbf{j}\in | 98 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5109420627 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |