Bipartite Flat-Graph Network for Nested Named Entity Recognition Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2020.acl-main.571
In this paper, we propose a novel bipartite flat-graph network (BiFlaG) for nested named entity recognition (NER), which contains two subgraph modules: a flat NER module for outermost entities and a graph module for all the entities located in inner layers. Bidirectional LSTM (BiLSTM) and graph convolutional network (GCN) are adopted to jointly learn flat entities and their inner dependencies. Different from previous models, which only consider the unidirectional delivery of information from innermost layers to outer ones (or outside-to-inside), our model effectively captures the bidirectional interaction between them. We first use the entities recognized by the flat NER module to construct an entity graph, which is fed to the next graph module. The richer representation learned from graph module carries the dependencies of inner entities and can be exploited to improve outermost entity predictions. Experimental results on three standard nested NER datasets demonstrate that our BiFlaG outperforms previous state-of-the-art models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2020.acl-main.571
- https://www.aclweb.org/anthology/2020.acl-main.571.pdf
- OA Status
- gold
- Cited By
- 77
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3035543689
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3035543689Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2020.acl-main.571Digital Object Identifier
- Title
-
Bipartite Flat-Graph Network for Nested Named Entity RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Ying Luo, Hai ZhaoList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2020.acl-main.571Publisher landing page
- PDF URL
-
https://www.aclweb.org/anthology/2020.acl-main.571.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.aclweb.org/anthology/2020.acl-main.571.pdfDirect OA link when available
- Concepts
-
Computer science, Bipartite graph, Graph, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
77Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 10, 2023: 14, 2022: 16, 2021: 24Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3035543689 |
|---|---|
| doi | https://doi.org/10.18653/v1/2020.acl-main.571 |
| ids.doi | https://doi.org/10.18653/v1/2020.acl-main.571 |
| ids.mag | 3035543689 |
| ids.openalex | https://openalex.org/W3035543689 |
| fwci | 8.51785381 |
| type | article |
| title | Bipartite Flat-Graph Network for Nested Named Entity Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 6418 |
| biblio.first_page | 6408 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T11719 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9955000281333923 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Data Quality and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7619457244873047 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C197657726 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7169269323348999 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q174733 |
| concepts[1].display_name | Bipartite graph |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5719400644302368 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C80444323 |
| concepts[3].level | 1 |
| concepts[3].score | 0.47172752022743225 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[3].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7619457244873047 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/bipartite-graph |
| keywords[1].score | 0.7169269323348999 |
| keywords[1].display_name | Bipartite graph |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5719400644302368 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[3].score | 0.47172752022743225 |
| keywords[3].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.18653/v1/2020.acl-main.571 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.aclweb.org/anthology/2020.acl-main.571.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2020.acl-main.571 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101420290 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2380-1567 |
| authorships[0].author.display_name | Ying Luo |
| authorships[0].countries | CN, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I183067930, https://openalex.org/I4210165726 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China MoE Key Lab of Artificial Intelligence, |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I183067930 |
| authorships[0].affiliations[1].raw_affiliation_string | Shanghai Jiao Tong University, Shanghai, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I2799847335 |
| authorships[0].affiliations[2].raw_affiliation_string | AI Institute, |
| authorships[0].institutions[0].id | https://openalex.org/I183067930 |
| authorships[0].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[0].institutions[1].id | https://openalex.org/I4210165726 |
| authorships[0].institutions[1].ror | https://ror.org/05tewj457 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210165456, https://openalex.org/I4210165726 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shanghai Municipal Education Commission |
| authorships[0].institutions[2].id | https://openalex.org/I2799847335 |
| authorships[0].institutions[2].ror | https://ror.org/01cb0jg64 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I2799847335, https://openalex.org/I2799969541 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | Art Institute of Portland |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ying Luo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | AI Institute,, Department of Computer Science and Engineering, Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China MoE Key Lab of Artificial Intelligence,, Shanghai Jiao Tong University, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5036050911 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7290-0487 |
| authorships[1].author.display_name | Hai Zhao |
| authorships[1].countries | CN, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2799847335 |
| authorships[1].affiliations[0].raw_affiliation_string | AI Institute, |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I183067930 |
| authorships[1].affiliations[1].raw_affiliation_string | Shanghai Jiao Tong University, Shanghai, China |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I183067930, https://openalex.org/I4210165726 |
| authorships[1].affiliations[2].raw_affiliation_string | Department of Computer Science and Engineering, Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China MoE Key Lab of Artificial Intelligence, |
| authorships[1].institutions[0].id | https://openalex.org/I183067930 |
| authorships[1].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[1].institutions[1].id | https://openalex.org/I4210165726 |
| authorships[1].institutions[1].ror | https://ror.org/05tewj457 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210165456, https://openalex.org/I4210165726 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shanghai Municipal Education Commission |
| authorships[1].institutions[2].id | https://openalex.org/I2799847335 |
| authorships[1].institutions[2].ror | https://ror.org/01cb0jg64 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I2799847335, https://openalex.org/I2799969541 |
| authorships[1].institutions[2].country_code | US |
| authorships[1].institutions[2].display_name | Art Institute of Portland |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Hai Zhao |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | AI Institute,, Department of Computer Science and Engineering, Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China MoE Key Lab of Artificial Intelligence,, Shanghai Jiao Tong University, Shanghai, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.aclweb.org/anthology/2020.acl-main.571.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bipartite Flat-Graph Network for Nested Named Entity Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2371352078, https://openalex.org/W2953461625, https://openalex.org/W2077383796, https://openalex.org/W2080136900, https://openalex.org/W2999799752, https://openalex.org/W3088754131, https://openalex.org/W3038848193 |
| cited_by_count | 77 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 14 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 16 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 24 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 4 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2020.acl-main.571 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.aclweb.org/anthology/2020.acl-main.571.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2020.acl-main.571 |
| primary_location.id | doi:10.18653/v1/2020.acl-main.571 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.aclweb.org/anthology/2020.acl-main.571.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2020.acl-main.571 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2163107094, https://openalex.org/W4307679110, https://openalex.org/W2859207840, https://openalex.org/W2950175955, https://openalex.org/W2250539671, https://openalex.org/W2970626985, https://openalex.org/W2898700358, https://openalex.org/W2950037171, https://openalex.org/W2296283641, https://openalex.org/W2108218871, https://openalex.org/W3102603416, https://openalex.org/W2964015378, https://openalex.org/W2971019153, https://openalex.org/W2963299810, https://openalex.org/W2963737836, https://openalex.org/W2892252202, https://openalex.org/W2963021447, https://openalex.org/W2952594430, https://openalex.org/W2147880316, https://openalex.org/W2600702321, https://openalex.org/W2806272805, https://openalex.org/W2963568202, https://openalex.org/W2963022746, https://openalex.org/W2890176538, https://openalex.org/W2962902328, https://openalex.org/W2998665041, https://openalex.org/W2998230451, https://openalex.org/W2998098272, https://openalex.org/W2970095952, https://openalex.org/W2962941447, https://openalex.org/W2047477415, https://openalex.org/W2998579922, https://openalex.org/W2963571583, https://openalex.org/W2949212908, https://openalex.org/W2963186636, https://openalex.org/W2963563735, https://openalex.org/W2864258299, https://openalex.org/W2798304389, https://openalex.org/W2803609931, https://openalex.org/W2951709801, https://openalex.org/W2250710764, https://openalex.org/W2950281195, https://openalex.org/W2804221886, https://openalex.org/W2810519866, https://openalex.org/W2804439688 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 5, 22, 30 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 89 |
| abstract_inverted_index.an | 102 |
| abstract_inverted_index.be | 128 |
| abstract_inverted_index.by | 95 |
| abstract_inverted_index.in | 38 |
| abstract_inverted_index.is | 106 |
| abstract_inverted_index.of | 70, 123 |
| abstract_inverted_index.on | 137 |
| abstract_inverted_index.to | 51, 75, 100, 108, 130 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.(or | 78 |
| abstract_inverted_index.NER | 24, 98, 141 |
| abstract_inverted_index.The | 113 |
| abstract_inverted_index.all | 34 |
| abstract_inverted_index.and | 29, 44, 56, 126 |
| abstract_inverted_index.are | 49 |
| abstract_inverted_index.can | 127 |
| abstract_inverted_index.fed | 107 |
| abstract_inverted_index.for | 11, 26, 33 |
| abstract_inverted_index.our | 80, 145 |
| abstract_inverted_index.the | 35, 67, 84, 92, 96, 109, 121 |
| abstract_inverted_index.two | 19 |
| abstract_inverted_index.use | 91 |
| abstract_inverted_index.LSTM | 42 |
| abstract_inverted_index.flat | 23, 54, 97 |
| abstract_inverted_index.from | 61, 72, 117 |
| abstract_inverted_index.next | 110 |
| abstract_inverted_index.ones | 77 |
| abstract_inverted_index.only | 65 |
| abstract_inverted_index.that | 144 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.(GCN) | 48 |
| abstract_inverted_index.first | 90 |
| abstract_inverted_index.graph | 31, 45, 111, 118 |
| abstract_inverted_index.inner | 39, 58, 124 |
| abstract_inverted_index.learn | 53 |
| abstract_inverted_index.model | 81 |
| abstract_inverted_index.named | 13 |
| abstract_inverted_index.novel | 6 |
| abstract_inverted_index.outer | 76 |
| abstract_inverted_index.their | 57 |
| abstract_inverted_index.them. | 88 |
| abstract_inverted_index.three | 138 |
| abstract_inverted_index.which | 17, 64, 105 |
| abstract_inverted_index.(NER), | 16 |
| abstract_inverted_index.BiFlaG | 146 |
| abstract_inverted_index.entity | 14, 103, 133 |
| abstract_inverted_index.graph, | 104 |
| abstract_inverted_index.layers | 74 |
| abstract_inverted_index.module | 25, 32, 99, 119 |
| abstract_inverted_index.nested | 12, 140 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.richer | 114 |
| abstract_inverted_index.adopted | 50 |
| abstract_inverted_index.between | 87 |
| abstract_inverted_index.carries | 120 |
| abstract_inverted_index.improve | 131 |
| abstract_inverted_index.jointly | 52 |
| abstract_inverted_index.layers. | 40 |
| abstract_inverted_index.learned | 116 |
| abstract_inverted_index.located | 37 |
| abstract_inverted_index.models, | 63 |
| abstract_inverted_index.models. | 150 |
| abstract_inverted_index.module. | 112 |
| abstract_inverted_index.network | 9, 47 |
| abstract_inverted_index.propose | 4 |
| abstract_inverted_index.results | 136 |
| abstract_inverted_index.(BiFlaG) | 10 |
| abstract_inverted_index.(BiLSTM) | 43 |
| abstract_inverted_index.captures | 83 |
| abstract_inverted_index.consider | 66 |
| abstract_inverted_index.contains | 18 |
| abstract_inverted_index.datasets | 142 |
| abstract_inverted_index.delivery | 69 |
| abstract_inverted_index.entities | 28, 36, 55, 93, 125 |
| abstract_inverted_index.modules: | 21 |
| abstract_inverted_index.previous | 62, 148 |
| abstract_inverted_index.standard | 139 |
| abstract_inverted_index.subgraph | 20 |
| abstract_inverted_index.Different | 60 |
| abstract_inverted_index.bipartite | 7 |
| abstract_inverted_index.construct | 101 |
| abstract_inverted_index.exploited | 129 |
| abstract_inverted_index.innermost | 73 |
| abstract_inverted_index.outermost | 27, 132 |
| abstract_inverted_index.flat-graph | 8 |
| abstract_inverted_index.recognized | 94 |
| abstract_inverted_index.demonstrate | 143 |
| abstract_inverted_index.effectively | 82 |
| abstract_inverted_index.information | 71 |
| abstract_inverted_index.interaction | 86 |
| abstract_inverted_index.outperforms | 147 |
| abstract_inverted_index.recognition | 15 |
| abstract_inverted_index.Experimental | 135 |
| abstract_inverted_index.dependencies | 122 |
| abstract_inverted_index.predictions. | 134 |
| abstract_inverted_index.Bidirectional | 41 |
| abstract_inverted_index.bidirectional | 85 |
| abstract_inverted_index.convolutional | 46 |
| abstract_inverted_index.dependencies. | 59 |
| abstract_inverted_index.representation | 115 |
| abstract_inverted_index.unidirectional | 68 |
| abstract_inverted_index.state-of-the-art | 149 |
| abstract_inverted_index.outside-to-inside), | 79 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5036050911 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I183067930, https://openalex.org/I2799847335, https://openalex.org/I4210165726 |
| citation_normalized_percentile.value | 0.97944423 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |