Bitcoin Price Forecasting Using Random Forest and On‑Chain Data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.15408/aism.v8i2.46690
Bitcoin’s extreme price volatility has long posed challenges for both investors and researchers seeking reliable forecasting models. Conventional financial approaches often fail to capture the highly complex, nonlinear, and fast-moving nature of cryptocurrency markets. To address this gap, this study develops a Bitcoin price prediction model using Random Forest Regression based on on-chain market data. The dataset was obtained from publicly available historical Bitcoin daily trading records spanning more than five years. Key features include opening price, daily high and low ranges, trading volume, and percentage change. The research was carried out in several stages. First, data preprocessing was conducted through normalization, handling of missing values, and feature engineering. Second, model training was performed with Random Forest, including parameter tuning to optimize predictive accuracy. Third, model evaluation employed R² and Mean Absolute Percentage Error (MAPE) as primary performance indicators. Fourth, visualization was implemented using interactive charts to allow users to observe short-term price fluctuations and long-term market patterns. The system development followed an iterative methodology inspired by the Streamlit Framework, which is an open-source Python library that simplifies building interactive web applications for data science and machine learning. This approach provides flexibility, enabling rapid experimentation and adaptation to evolving market conditions. The results show that the proposed model achieves near-perfect R² values (approaching 1.0) with consistently low MAPE, highlighting its reliability. Beyond predictive performance, the framework is designed to be scalable, supporting future integration with deep learning methods such as LSTM and external macroeconomic indicators, thus offering both practical utility for investors and academic contributions to decentralized finance research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.15408/aism.v8i2.46690
- OA Status
- hybrid
- OpenAlex ID
- https://openalex.org/W4414922662
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414922662Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.15408/aism.v8i2.46690Digital Object Identifier
- Title
-
Bitcoin Price Forecasting Using Random Forest and On‑Chain DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-07Full publication date if available
- Authors
-
Samsudin Samsudin, Muhammad Dedi Irawan, Muhammad Irwan Padli Nasution, Raissa Amanda PutriList of authors in order
- Landing page
-
https://doi.org/10.15408/aism.v8i2.46690Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.15408/aism.v8i2.46690Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414922662 |
|---|---|
| doi | https://doi.org/10.15408/aism.v8i2.46690 |
| ids.doi | https://doi.org/10.15408/aism.v8i2.46690 |
| ids.openalex | https://openalex.org/W4414922662 |
| fwci | 0.0 |
| type | article |
| title | Bitcoin Price Forecasting Using Random Forest and On‑Chain Data |
| biblio.issue | 2 |
| biblio.volume | 8 |
| biblio.last_page | 364 |
| biblio.first_page | 355 |
| topics[0].id | https://openalex.org/T10270 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8021000027656555 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Blockchain Technology Applications and Security |
| topics[1].id | https://openalex.org/T14319 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.7753999829292297 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Currency Recognition and Detection |
| topics[2].id | https://openalex.org/T11326 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.6746000051498413 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Stock Market Forecasting Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.15408/aism.v8i2.46690 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210198747 |
| locations[0].source.issn | 2621-2536, 2621-2544 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2621-2536 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Applied Information System and Management (AISM) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Information System and Management (AISM) |
| locations[0].landing_page_url | https://doi.org/10.15408/aism.v8i2.46690 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101921589 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Samsudin Samsudin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Samsudin Samsudin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5084316241 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5530-2418 |
| authorships[1].author.display_name | Muhammad Dedi Irawan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Muhammad Dedi Irawan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5033089417 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9597-1210 |
| authorships[2].author.display_name | Muhammad Irwan Padli Nasution |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Muhammad Irwan Padli Nasution |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5027369752 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Raissa Amanda Putri |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Raissa Amanda Putri |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.15408/aism.v8i2.46690 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bitcoin Price Forecasting Using Random Forest and On‑Chain Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10270 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8021000027656555 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Blockchain Technology Applications and Security |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.15408/aism.v8i2.46690 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210198747 |
| best_oa_location.source.issn | 2621-2536, 2621-2544 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2621-2536 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Applied Information System and Management (AISM) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Information System and Management (AISM) |
| best_oa_location.landing_page_url | https://doi.org/10.15408/aism.v8i2.46690 |
| primary_location.id | doi:10.15408/aism.v8i2.46690 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210198747 |
| primary_location.source.issn | 2621-2536, 2621-2544 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2621-2536 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Applied Information System and Management (AISM) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Information System and Management (AISM) |
| primary_location.landing_page_url | https://doi.org/10.15408/aism.v8i2.46690 |
| publication_date | 2025-10-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 41 |
| abstract_inverted_index.To | 34 |
| abstract_inverted_index.an | 162, 172 |
| abstract_inverted_index.as | 135, 239 |
| abstract_inverted_index.be | 229 |
| abstract_inverted_index.by | 166 |
| abstract_inverted_index.in | 92 |
| abstract_inverted_index.is | 171, 226 |
| abstract_inverted_index.of | 31, 103 |
| abstract_inverted_index.on | 51 |
| abstract_inverted_index.to | 22, 120, 146, 149, 197, 228, 255 |
| abstract_inverted_index.Key | 72 |
| abstract_inverted_index.R² | 128, 210 |
| abstract_inverted_index.The | 55, 87, 158, 201 |
| abstract_inverted_index.and | 11, 28, 79, 84, 106, 129, 154, 185, 195, 241, 252 |
| abstract_inverted_index.for | 8, 182, 250 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.its | 219 |
| abstract_inverted_index.low | 80, 216 |
| abstract_inverted_index.out | 91 |
| abstract_inverted_index.the | 24, 167, 205, 224 |
| abstract_inverted_index.was | 57, 89, 98, 112, 141 |
| abstract_inverted_index.web | 180 |
| abstract_inverted_index.1.0) | 213 |
| abstract_inverted_index.LSTM | 240 |
| abstract_inverted_index.Mean | 130 |
| abstract_inverted_index.This | 188 |
| abstract_inverted_index.both | 9, 247 |
| abstract_inverted_index.data | 96, 183 |
| abstract_inverted_index.deep | 235 |
| abstract_inverted_index.fail | 21 |
| abstract_inverted_index.five | 70 |
| abstract_inverted_index.from | 59 |
| abstract_inverted_index.gap, | 37 |
| abstract_inverted_index.high | 78 |
| abstract_inverted_index.long | 5 |
| abstract_inverted_index.more | 68 |
| abstract_inverted_index.show | 203 |
| abstract_inverted_index.such | 238 |
| abstract_inverted_index.than | 69 |
| abstract_inverted_index.that | 176, 204 |
| abstract_inverted_index.this | 36, 38 |
| abstract_inverted_index.thus | 245 |
| abstract_inverted_index.with | 114, 214, 234 |
| abstract_inverted_index.Error | 133 |
| abstract_inverted_index.MAPE, | 217 |
| abstract_inverted_index.allow | 147 |
| abstract_inverted_index.based | 50 |
| abstract_inverted_index.daily | 64, 77 |
| abstract_inverted_index.data. | 54 |
| abstract_inverted_index.model | 45, 110, 125, 207 |
| abstract_inverted_index.often | 20 |
| abstract_inverted_index.posed | 6 |
| abstract_inverted_index.price | 2, 43, 152 |
| abstract_inverted_index.rapid | 193 |
| abstract_inverted_index.study | 39 |
| abstract_inverted_index.users | 148 |
| abstract_inverted_index.using | 46, 143 |
| abstract_inverted_index.which | 170 |
| abstract_inverted_index.(MAPE) | 134 |
| abstract_inverted_index.Beyond | 221 |
| abstract_inverted_index.First, | 95 |
| abstract_inverted_index.Forest | 48 |
| abstract_inverted_index.Python | 174 |
| abstract_inverted_index.Random | 47, 115 |
| abstract_inverted_index.Third, | 124 |
| abstract_inverted_index.charts | 145 |
| abstract_inverted_index.future | 232 |
| abstract_inverted_index.highly | 25 |
| abstract_inverted_index.market | 53, 156, 199 |
| abstract_inverted_index.nature | 30 |
| abstract_inverted_index.price, | 76 |
| abstract_inverted_index.system | 159 |
| abstract_inverted_index.tuning | 119 |
| abstract_inverted_index.values | 211 |
| abstract_inverted_index.years. | 71 |
| abstract_inverted_index.Bitcoin | 42, 63 |
| abstract_inverted_index.Forest, | 116 |
| abstract_inverted_index.Fourth, | 139 |
| abstract_inverted_index.Second, | 109 |
| abstract_inverted_index.address | 35 |
| abstract_inverted_index.capture | 23 |
| abstract_inverted_index.carried | 90 |
| abstract_inverted_index.change. | 86 |
| abstract_inverted_index.dataset | 56 |
| abstract_inverted_index.extreme | 1 |
| abstract_inverted_index.feature | 107 |
| abstract_inverted_index.finance | 257 |
| abstract_inverted_index.include | 74 |
| abstract_inverted_index.library | 175 |
| abstract_inverted_index.machine | 186 |
| abstract_inverted_index.methods | 237 |
| abstract_inverted_index.missing | 104 |
| abstract_inverted_index.models. | 16 |
| abstract_inverted_index.observe | 150 |
| abstract_inverted_index.opening | 75 |
| abstract_inverted_index.primary | 136 |
| abstract_inverted_index.ranges, | 81 |
| abstract_inverted_index.records | 66 |
| abstract_inverted_index.results | 202 |
| abstract_inverted_index.science | 184 |
| abstract_inverted_index.seeking | 13 |
| abstract_inverted_index.several | 93 |
| abstract_inverted_index.stages. | 94 |
| abstract_inverted_index.through | 100 |
| abstract_inverted_index.trading | 65, 82 |
| abstract_inverted_index.utility | 249 |
| abstract_inverted_index.values, | 105 |
| abstract_inverted_index.volume, | 83 |
| abstract_inverted_index.Absolute | 131 |
| abstract_inverted_index.academic | 253 |
| abstract_inverted_index.achieves | 208 |
| abstract_inverted_index.approach | 189 |
| abstract_inverted_index.building | 178 |
| abstract_inverted_index.complex, | 26 |
| abstract_inverted_index.designed | 227 |
| abstract_inverted_index.develops | 40 |
| abstract_inverted_index.employed | 127 |
| abstract_inverted_index.enabling | 192 |
| abstract_inverted_index.evolving | 198 |
| abstract_inverted_index.external | 242 |
| abstract_inverted_index.features | 73 |
| abstract_inverted_index.followed | 161 |
| abstract_inverted_index.handling | 102 |
| abstract_inverted_index.inspired | 165 |
| abstract_inverted_index.learning | 236 |
| abstract_inverted_index.markets. | 33 |
| abstract_inverted_index.obtained | 58 |
| abstract_inverted_index.offering | 246 |
| abstract_inverted_index.on-chain | 52 |
| abstract_inverted_index.optimize | 121 |
| abstract_inverted_index.proposed | 206 |
| abstract_inverted_index.provides | 190 |
| abstract_inverted_index.publicly | 60 |
| abstract_inverted_index.reliable | 14 |
| abstract_inverted_index.research | 88 |
| abstract_inverted_index.spanning | 67 |
| abstract_inverted_index.training | 111 |
| abstract_inverted_index.Streamlit | 168 |
| abstract_inverted_index.accuracy. | 123 |
| abstract_inverted_index.available | 61 |
| abstract_inverted_index.conducted | 99 |
| abstract_inverted_index.financial | 18 |
| abstract_inverted_index.framework | 225 |
| abstract_inverted_index.including | 117 |
| abstract_inverted_index.investors | 10, 251 |
| abstract_inverted_index.iterative | 163 |
| abstract_inverted_index.learning. | 187 |
| abstract_inverted_index.long-term | 155 |
| abstract_inverted_index.parameter | 118 |
| abstract_inverted_index.patterns. | 157 |
| abstract_inverted_index.performed | 113 |
| abstract_inverted_index.practical | 248 |
| abstract_inverted_index.research. | 258 |
| abstract_inverted_index.scalable, | 230 |
| abstract_inverted_index.Framework, | 169 |
| abstract_inverted_index.Percentage | 132 |
| abstract_inverted_index.Regression | 49 |
| abstract_inverted_index.adaptation | 196 |
| abstract_inverted_index.approaches | 19 |
| abstract_inverted_index.challenges | 7 |
| abstract_inverted_index.evaluation | 126 |
| abstract_inverted_index.historical | 62 |
| abstract_inverted_index.nonlinear, | 27 |
| abstract_inverted_index.percentage | 85 |
| abstract_inverted_index.prediction | 44 |
| abstract_inverted_index.predictive | 122, 222 |
| abstract_inverted_index.short-term | 151 |
| abstract_inverted_index.simplifies | 177 |
| abstract_inverted_index.supporting | 231 |
| abstract_inverted_index.volatility | 3 |
| abstract_inverted_index.Bitcoin’s | 0 |
| abstract_inverted_index.conditions. | 200 |
| abstract_inverted_index.development | 160 |
| abstract_inverted_index.fast-moving | 29 |
| abstract_inverted_index.forecasting | 15 |
| abstract_inverted_index.implemented | 142 |
| abstract_inverted_index.indicators, | 244 |
| abstract_inverted_index.indicators. | 138 |
| abstract_inverted_index.integration | 233 |
| abstract_inverted_index.interactive | 144, 179 |
| abstract_inverted_index.methodology | 164 |
| abstract_inverted_index.open-source | 173 |
| abstract_inverted_index.performance | 137 |
| abstract_inverted_index.researchers | 12 |
| abstract_inverted_index.(approaching | 212 |
| abstract_inverted_index.Conventional | 17 |
| abstract_inverted_index.applications | 181 |
| abstract_inverted_index.consistently | 215 |
| abstract_inverted_index.engineering. | 108 |
| abstract_inverted_index.flexibility, | 191 |
| abstract_inverted_index.fluctuations | 153 |
| abstract_inverted_index.highlighting | 218 |
| abstract_inverted_index.near-perfect | 209 |
| abstract_inverted_index.performance, | 223 |
| abstract_inverted_index.reliability. | 220 |
| abstract_inverted_index.contributions | 254 |
| abstract_inverted_index.decentralized | 256 |
| abstract_inverted_index.macroeconomic | 243 |
| abstract_inverted_index.preprocessing | 97 |
| abstract_inverted_index.visualization | 140 |
| abstract_inverted_index.cryptocurrency | 32 |
| abstract_inverted_index.normalization, | 101 |
| abstract_inverted_index.experimentation | 194 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.60796775 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |