Bivariate Polynomial Matrix and Smith Form Article Swipe
Licui Zheng
,
Tao Wu
,
Jinwang Liu
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/math12060815
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/math12060815
Matrix equivalence plays a pivotal role in multidimensional systems, which are typically represented by multivariate polynomial matrices. The Smith form of matrices is one of the important research topics in polynomial matrices. This article mainly investigates the Smith forms of several types of bivariate polynomial matrices and has successfully derived several necessary and sufficient conditions for matrix equivalence.
Related Topics
Concepts
Polynomial matrix
Matrix polynomial
Bivariate analysis
Mathematics
Equivalence (formal languages)
Stable polynomial
Matrix (chemical analysis)
Polynomial
Characteristic polynomial
Algebra over a field
Companion matrix
Pure mathematics
Alternating polynomial
Mathematical analysis
Statistics
Composite material
Materials science
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math12060815
- https://www.mdpi.com/2227-7390/12/6/815/pdf?version=1710075190
- OA Status
- gold
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392647116
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392647116Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math12060815Digital Object Identifier
- Title
-
Bivariate Polynomial Matrix and Smith FormWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-10Full publication date if available
- Authors
-
Licui Zheng, Tao Wu, Jinwang LiuList of authors in order
- Landing page
-
https://doi.org/10.3390/math12060815Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/12/6/815/pdf?version=1710075190Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/12/6/815/pdf?version=1710075190Direct OA link when available
- Concepts
-
Polynomial matrix, Matrix polynomial, Bivariate analysis, Mathematics, Equivalence (formal languages), Stable polynomial, Matrix (chemical analysis), Polynomial, Characteristic polynomial, Algebra over a field, Companion matrix, Pure mathematics, Alternating polynomial, Mathematical analysis, Statistics, Composite material, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392647116 |
|---|---|
| doi | https://doi.org/10.3390/math12060815 |
| ids.doi | https://doi.org/10.3390/math12060815 |
| ids.openalex | https://openalex.org/W4392647116 |
| fwci | 0.0 |
| type | article |
| title | Bivariate Polynomial Matrix and Smith Form |
| awards[0].id | https://openalex.org/G6455544819 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 12201204 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 6 |
| biblio.volume | 12 |
| biblio.last_page | 815 |
| biblio.first_page | 815 |
| topics[0].id | https://openalex.org/T11435 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9961000084877014 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Polynomial and algebraic computation |
| topics[1].id | https://openalex.org/T13935 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9939000010490417 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Mathematical Control Systems and Analysis |
| topics[2].id | https://openalex.org/T12396 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9829999804496765 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2608 |
| topics[2].subfield.display_name | Geometry and Topology |
| topics[2].display_name | Advanced Differential Equations and Dynamical Systems |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C126352355 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8473303318023682 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2562273 |
| concepts[0].display_name | Polynomial matrix |
| concepts[1].id | https://openalex.org/C101044782 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7935795783996582 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6787887 |
| concepts[1].display_name | Matrix polynomial |
| concepts[2].id | https://openalex.org/C64341305 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6953083276748657 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4919225 |
| concepts[2].display_name | Bivariate analysis |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6337354779243469 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C2780069185 |
| concepts[4].level | 2 |
| concepts[4].score | 0.59701007604599 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7977945 |
| concepts[4].display_name | Equivalence (formal languages) |
| concepts[5].id | https://openalex.org/C45025165 |
| concepts[5].level | 5 |
| concepts[5].score | 0.5946025252342224 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q13424738 |
| concepts[5].display_name | Stable polynomial |
| concepts[6].id | https://openalex.org/C106487976 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5550282597541809 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[6].display_name | Matrix (chemical analysis) |
| concepts[7].id | https://openalex.org/C90119067 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5513864159584045 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q43260 |
| concepts[7].display_name | Polynomial |
| concepts[8].id | https://openalex.org/C42321380 |
| concepts[8].level | 3 |
| concepts[8].score | 0.46627146005630493 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q849705 |
| concepts[8].display_name | Characteristic polynomial |
| concepts[9].id | https://openalex.org/C136119220 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44180893898010254 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[9].display_name | Algebra over a field |
| concepts[10].id | https://openalex.org/C141495983 |
| concepts[10].level | 5 |
| concepts[10].score | 0.4339371919631958 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q814361 |
| concepts[10].display_name | Companion matrix |
| concepts[11].id | https://openalex.org/C202444582 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3998015820980072 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[11].display_name | Pure mathematics |
| concepts[12].id | https://openalex.org/C170412648 |
| concepts[12].level | 4 |
| concepts[12].score | 0.30535516142845154 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4736415 |
| concepts[12].display_name | Alternating polynomial |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09390014410018921 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08332830667495728 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C159985019 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[15].display_name | Composite material |
| concepts[16].id | https://openalex.org/C192562407 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[16].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/polynomial-matrix |
| keywords[0].score | 0.8473303318023682 |
| keywords[0].display_name | Polynomial matrix |
| keywords[1].id | https://openalex.org/keywords/matrix-polynomial |
| keywords[1].score | 0.7935795783996582 |
| keywords[1].display_name | Matrix polynomial |
| keywords[2].id | https://openalex.org/keywords/bivariate-analysis |
| keywords[2].score | 0.6953083276748657 |
| keywords[2].display_name | Bivariate analysis |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.6337354779243469 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/equivalence |
| keywords[4].score | 0.59701007604599 |
| keywords[4].display_name | Equivalence (formal languages) |
| keywords[5].id | https://openalex.org/keywords/stable-polynomial |
| keywords[5].score | 0.5946025252342224 |
| keywords[5].display_name | Stable polynomial |
| keywords[6].id | https://openalex.org/keywords/matrix |
| keywords[6].score | 0.5550282597541809 |
| keywords[6].display_name | Matrix (chemical analysis) |
| keywords[7].id | https://openalex.org/keywords/polynomial |
| keywords[7].score | 0.5513864159584045 |
| keywords[7].display_name | Polynomial |
| keywords[8].id | https://openalex.org/keywords/characteristic-polynomial |
| keywords[8].score | 0.46627146005630493 |
| keywords[8].display_name | Characteristic polynomial |
| keywords[9].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[9].score | 0.44180893898010254 |
| keywords[9].display_name | Algebra over a field |
| keywords[10].id | https://openalex.org/keywords/companion-matrix |
| keywords[10].score | 0.4339371919631958 |
| keywords[10].display_name | Companion matrix |
| keywords[11].id | https://openalex.org/keywords/pure-mathematics |
| keywords[11].score | 0.3998015820980072 |
| keywords[11].display_name | Pure mathematics |
| keywords[12].id | https://openalex.org/keywords/alternating-polynomial |
| keywords[12].score | 0.30535516142845154 |
| keywords[12].display_name | Alternating polynomial |
| keywords[13].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[13].score | 0.09390014410018921 |
| keywords[13].display_name | Mathematical analysis |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.08332830667495728 |
| keywords[14].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.3390/math12060815 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/12/6/815/pdf?version=1710075190 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math12060815 |
| locations[1].id | pmh:oai:doaj.org/article:bd2306d9dafe425e8f1300191ba62790 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 12, Iss 6, p 815 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/bd2306d9dafe425e8f1300191ba62790 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5005298522 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Licui Zheng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I121296143 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[0].institutions[0].id | https://openalex.org/I121296143 |
| authorships[0].institutions[0].ror | https://ror.org/02m9vrb24 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I121296143 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hunan University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Licui Zheng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[1].author.id | https://openalex.org/A5026224959 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3822-6366 |
| authorships[1].author.display_name | Tao Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I121296143 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[1].institutions[0].id | https://openalex.org/I121296143 |
| authorships[1].institutions[0].ror | https://ror.org/02m9vrb24 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I121296143 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hunan University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tao Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[2].author.id | https://openalex.org/A5103228907 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jinwang Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I121296143 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[2].institutions[0].id | https://openalex.org/I121296143 |
| authorships[2].institutions[0].ror | https://ror.org/02m9vrb24 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I121296143 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hunan University of Science and Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jinwang Liu |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan 411201, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/12/6/815/pdf?version=1710075190 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bivariate Polynomial Matrix and Smith Form |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11435 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9961000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Polynomial and algebraic computation |
| related_works | https://openalex.org/W2905919007, https://openalex.org/W2023818677, https://openalex.org/W2099412787, https://openalex.org/W1543706171, https://openalex.org/W2040308058, https://openalex.org/W2140446896, https://openalex.org/W2152434155, https://openalex.org/W2062371205, https://openalex.org/W2386881760, https://openalex.org/W2181814365 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/math12060815 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/12/6/815/pdf?version=1710075190 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math12060815 |
| primary_location.id | doi:10.3390/math12060815 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/12/6/815/pdf?version=1710075190 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math12060815 |
| publication_date | 2024-03-10 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W23086234, https://openalex.org/W2037734816, https://openalex.org/W2058540481, https://openalex.org/W1998033277, https://openalex.org/W6607029143, https://openalex.org/W2067819059, https://openalex.org/W2145058185, https://openalex.org/W1981707938, https://openalex.org/W2018193583, https://openalex.org/W2170019535, https://openalex.org/W2130779295, https://openalex.org/W598745901, https://openalex.org/W2159234002, https://openalex.org/W2895079933, https://openalex.org/W6777128930, https://openalex.org/W2055817410, https://openalex.org/W4322745984, https://openalex.org/W3005191414, https://openalex.org/W1981482848, https://openalex.org/W2109339972, https://openalex.org/W2014926578, https://openalex.org/W4295408312, https://openalex.org/W3024688609, https://openalex.org/W171488552 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.by | 13 |
| abstract_inverted_index.in | 6, 29 |
| abstract_inverted_index.is | 22 |
| abstract_inverted_index.of | 20, 24, 39, 42 |
| abstract_inverted_index.The | 17 |
| abstract_inverted_index.and | 46, 52 |
| abstract_inverted_index.are | 10 |
| abstract_inverted_index.for | 55 |
| abstract_inverted_index.has | 47 |
| abstract_inverted_index.one | 23 |
| abstract_inverted_index.the | 25, 36 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.form | 19 |
| abstract_inverted_index.role | 5 |
| abstract_inverted_index.Smith | 18, 37 |
| abstract_inverted_index.forms | 38 |
| abstract_inverted_index.plays | 2 |
| abstract_inverted_index.types | 41 |
| abstract_inverted_index.which | 9 |
| abstract_inverted_index.Matrix | 0 |
| abstract_inverted_index.mainly | 34 |
| abstract_inverted_index.matrix | 56 |
| abstract_inverted_index.topics | 28 |
| abstract_inverted_index.article | 33 |
| abstract_inverted_index.derived | 49 |
| abstract_inverted_index.pivotal | 4 |
| abstract_inverted_index.several | 40, 50 |
| abstract_inverted_index.matrices | 21, 45 |
| abstract_inverted_index.research | 27 |
| abstract_inverted_index.systems, | 8 |
| abstract_inverted_index.bivariate | 43 |
| abstract_inverted_index.important | 26 |
| abstract_inverted_index.matrices. | 16, 31 |
| abstract_inverted_index.necessary | 51 |
| abstract_inverted_index.typically | 11 |
| abstract_inverted_index.conditions | 54 |
| abstract_inverted_index.polynomial | 15, 30, 44 |
| abstract_inverted_index.sufficient | 53 |
| abstract_inverted_index.equivalence | 1 |
| abstract_inverted_index.represented | 12 |
| abstract_inverted_index.equivalence. | 57 |
| abstract_inverted_index.investigates | 35 |
| abstract_inverted_index.multivariate | 14 |
| abstract_inverted_index.successfully | 48 |
| abstract_inverted_index.multidimensional | 7 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5103228907 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I121296143 |
| citation_normalized_percentile.value | 0.04922326 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |