Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2104.04377
Deep learning architectures have an extremely high-capacity for modeling complex data in a wide variety of domains. However, these architectures have been limited in their ability to support complex prediction problems using insurance claims data, such as readmission at 30 days, mainly due to data sparsity issue. Consequently, classical machine learning methods, especially those that embed domain knowledge in handcrafted features, are often on par with, and sometimes outperform, deep learning approaches. In this paper, we illustrate how the potential of deep learning can be achieved by blending domain knowledge within deep learning architectures to predict adverse events at hospital discharge, including readmissions. More specifically, we introduce a learning architecture that fuses a representation of patient data computed by a self-attention based recurrent neural network, with clinically relevant features. We conduct extensive experiments on a large claims dataset and show that the blended method outperforms the standard machine learning approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://pubmed.ncbi.nlm.nih.gov/34457127
- OA Status
- green
- Cited By
- 1
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3154434348
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3154434348Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2104.04377Digital Object Identifier
- Title
-
Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital DischargeWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-09Full publication date if available
- Authors
-
Prithwish Chakraborty, James Codella, Piyush Madan, Ying Li, Hu Huang, Yoon-Young Park, Chao Yan, Ziqi Zhang, Cheng Gao, Steve Nyemba, Min Xu, Sanjib Basak, Mohamed Ghalwash, Zach Shahn, Parthasararathy Suryanarayanan, Italo Buleje, Shannon Harrer, Sarah Miller, Amol Rajmane, Colin G. Walsh, Jonathan P. Wanderer, Gigi Yuen Reed, Kenney Ng, Daby Sow, Bradley MalinList of authors in order
- Landing page
-
https://pubmed.ncbi.nlm.nih.gov/34457127Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2104.04377Direct OA link when available
- Concepts
-
Deep learning, Artificial intelligence, Computer science, Machine learning, Domain knowledge, Domain (mathematical analysis), Recurrent neural network, Representation (politics), Artificial neural network, Variety (cybernetics), Feature learning, Deep neural networks, Architecture, Network architecture, Event (particle physics), Data science, Quantum mechanics, Political science, Computer security, Art, Mathematics, Law, Visual arts, Mathematical analysis, Physics, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3154434348 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2104.04377 |
| ids.doi | https://doi.org/10.48550/arxiv.2104.04377 |
| ids.mag | 3154434348 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34457127 |
| ids.openalex | https://openalex.org/W3154434348 |
| fwci | |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006761 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Hospitals |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000069550 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Machine Learning |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D010351 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Patient Discharge |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006761 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Hospitals |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000069550 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Machine Learning |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D016571 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Neural Networks, Computer |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D010351 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Patient Discharge |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006761 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Hospitals |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D006801 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Humans |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000069550 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Machine Learning |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D016571 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Neural Networks, Computer |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D010351 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Patient Discharge |
| type | preprint |
| title | Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge |
| biblio.issue | |
| biblio.volume | 2021 |
| biblio.last_page | 141 |
| biblio.first_page | 132 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T11095 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9575999975204468 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2711 |
| topics[1].subfield.display_name | Emergency Medicine |
| topics[1].display_name | Emergency and Acute Care Studies |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.914900004863739 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7788429260253906 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7503575682640076 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7309749126434326 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6796767711639404 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C207685749 |
| concepts[4].level | 2 |
| concepts[4].score | 0.567253589630127 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2088941 |
| concepts[4].display_name | Domain knowledge |
| concepts[5].id | https://openalex.org/C36503486 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5159593224525452 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[5].display_name | Domain (mathematical analysis) |
| concepts[6].id | https://openalex.org/C147168706 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5078449845314026 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[6].display_name | Recurrent neural network |
| concepts[7].id | https://openalex.org/C2776359362 |
| concepts[7].level | 3 |
| concepts[7].score | 0.491865873336792 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[7].display_name | Representation (politics) |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46103715896606445 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C136197465 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4592210650444031 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[9].display_name | Variety (cybernetics) |
| concepts[10].id | https://openalex.org/C59404180 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45765411853790283 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[10].display_name | Feature learning |
| concepts[11].id | https://openalex.org/C2984842247 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4507935643196106 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[11].display_name | Deep neural networks |
| concepts[12].id | https://openalex.org/C123657996 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4423951208591461 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[12].display_name | Architecture |
| concepts[13].id | https://openalex.org/C193415008 |
| concepts[13].level | 2 |
| concepts[13].score | 0.41942524909973145 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q639681 |
| concepts[13].display_name | Network architecture |
| concepts[14].id | https://openalex.org/C2779662365 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4109591841697693 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[14].display_name | Event (particle physics) |
| concepts[15].id | https://openalex.org/C2522767166 |
| concepts[15].level | 1 |
| concepts[15].score | 0.32859909534454346 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[15].display_name | Data science |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C17744445 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[17].display_name | Political science |
| concepts[18].id | https://openalex.org/C38652104 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[18].display_name | Computer security |
| concepts[19].id | https://openalex.org/C142362112 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[19].display_name | Art |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| concepts[21].id | https://openalex.org/C199539241 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[21].display_name | Law |
| concepts[22].id | https://openalex.org/C153349607 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[22].display_name | Visual arts |
| concepts[23].id | https://openalex.org/C134306372 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[23].display_name | Mathematical analysis |
| concepts[24].id | https://openalex.org/C121332964 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[24].display_name | Physics |
| concepts[25].id | https://openalex.org/C94625758 |
| concepts[25].level | 2 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[25].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.7788429260253906 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7503575682640076 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7309749126434326 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.6796767711639404 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/domain-knowledge |
| keywords[4].score | 0.567253589630127 |
| keywords[4].display_name | Domain knowledge |
| keywords[5].id | https://openalex.org/keywords/domain |
| keywords[5].score | 0.5159593224525452 |
| keywords[5].display_name | Domain (mathematical analysis) |
| keywords[6].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[6].score | 0.5078449845314026 |
| keywords[6].display_name | Recurrent neural network |
| keywords[7].id | https://openalex.org/keywords/representation |
| keywords[7].score | 0.491865873336792 |
| keywords[7].display_name | Representation (politics) |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.46103715896606445 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/variety |
| keywords[9].score | 0.4592210650444031 |
| keywords[9].display_name | Variety (cybernetics) |
| keywords[10].id | https://openalex.org/keywords/feature-learning |
| keywords[10].score | 0.45765411853790283 |
| keywords[10].display_name | Feature learning |
| keywords[11].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[11].score | 0.4507935643196106 |
| keywords[11].display_name | Deep neural networks |
| keywords[12].id | https://openalex.org/keywords/architecture |
| keywords[12].score | 0.4423951208591461 |
| keywords[12].display_name | Architecture |
| keywords[13].id | https://openalex.org/keywords/network-architecture |
| keywords[13].score | 0.41942524909973145 |
| keywords[13].display_name | Network architecture |
| keywords[14].id | https://openalex.org/keywords/event |
| keywords[14].score | 0.4109591841697693 |
| keywords[14].display_name | Event (particle physics) |
| keywords[15].id | https://openalex.org/keywords/data-science |
| keywords[15].score | 0.32859909534454346 |
| keywords[15].display_name | Data science |
| language | en |
| locations[0].id | pmid:34457127 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306525036 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | PubMed |
| locations[0].source.host_organization | https://openalex.org/I1299303238 |
| locations[0].source.host_organization_name | National Institutes of Health |
| locations[0].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science |
| locations[0].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34457127 |
| locations[1].id | pmh:oai:arXiv.org:2104.04377 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2104.04377 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2104.04377 |
| locations[2].id | mag:3154434348 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | http://export.arxiv.org/pdf/2104.04377 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8378633 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | AMIA Jt Summits Transl Sci Proc |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8378633 |
| locations[4].id | doi:10.48550/arxiv.2104.04377 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400194 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | arXiv (Cornell University) |
| locations[4].source.host_organization | https://openalex.org/I205783295 |
| locations[4].source.host_organization_name | Cornell University |
| locations[4].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.48550/arxiv.2104.04377 |
| indexed_in | arxiv, datacite, pubmed |
| authorships[0].author.id | https://openalex.org/A5103154375 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1407-7677 |
| authorships[0].author.display_name | Prithwish Chakraborty |
| authorships[0].affiliations[0].raw_affiliation_string | 1 IBM Research, USA |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Prithwish Chakraborty |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 1 IBM Research, USA |
| authorships[1].author.id | https://openalex.org/A5003339852 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3430-0429 |
| authorships[1].author.display_name | James Codella |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210156936 |
| authorships[1].affiliations[0].raw_affiliation_string | IBM Research (USA) |
| authorships[1].institutions[0].id | https://openalex.org/I4210156936 |
| authorships[1].institutions[0].ror | https://ror.org/05gjbbg60 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210156936 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | IBM Research - Austin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | James Codella |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IBM Research (USA) |
| authorships[2].author.id | https://openalex.org/A5113917124 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Piyush Madan |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210156936 |
| authorships[2].affiliations[0].raw_affiliation_string | IBM Research (USA) |
| authorships[2].institutions[0].id | https://openalex.org/I4210156936 |
| authorships[2].institutions[0].ror | https://ror.org/05gjbbg60 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210156936 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | IBM Research - Austin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Piyush Madan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IBM Research (USA) |
| authorships[3].author.id | https://openalex.org/A5100414185 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2813-9480 |
| authorships[3].author.display_name | Ying Li |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210156936 |
| authorships[3].affiliations[0].raw_affiliation_string | IBM Research (USA) |
| authorships[3].institutions[0].id | https://openalex.org/I4210156936 |
| authorships[3].institutions[0].ror | https://ror.org/05gjbbg60 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210156936 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | IBM Research - Austin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ying Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | IBM Research (USA) |
| authorships[4].author.id | https://openalex.org/A5063803686 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4384-3804 |
| authorships[4].author.display_name | Hu Huang |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[4].affiliations[0].raw_affiliation_string | 2 IBM Watson Health, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[4].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | IBM (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hu Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | 2 IBM Watson Health, USA |
| authorships[5].author.id | https://openalex.org/A5055790388 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7056-3966 |
| authorships[5].author.display_name | Yoon-Young Park |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210156936 |
| authorships[5].affiliations[0].raw_affiliation_string | IBM Research (USA) |
| authorships[5].institutions[0].id | https://openalex.org/I4210156936 |
| authorships[5].institutions[0].ror | https://ror.org/05gjbbg60 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210156936 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | IBM Research - Austin |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yoonyoung Park |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | IBM Research (USA) |
| authorships[6].author.id | https://openalex.org/A5002556086 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6719-1388 |
| authorships[6].author.display_name | Chao Yan |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[6].affiliations[0].raw_affiliation_string | 3 Vanderbilt University, Nashville, TN, USA |
| authorships[6].institutions[0].id | https://openalex.org/I200719446 |
| authorships[6].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Vanderbilt University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chao Yan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | 3 Vanderbilt University, Nashville, TN, USA |
| authorships[7].author.id | https://openalex.org/A5100404392 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8587-8618 |
| authorships[7].author.display_name | Ziqi Zhang |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[7].affiliations[0].raw_affiliation_string | Vanderbilt University; Nashville TN USA |
| authorships[7].institutions[0].id | https://openalex.org/I200719446 |
| authorships[7].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Vanderbilt University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ziqi Zhang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Vanderbilt University; Nashville TN USA |
| authorships[8].author.id | https://openalex.org/A5101699465 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-8862-316X |
| authorships[8].author.display_name | Cheng Gao |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[8].affiliations[0].raw_affiliation_string | 1 Vanderbilt University Medical Center, Nashville, TN, USA. |
| authorships[8].institutions[0].id | https://openalex.org/I901861585 |
| authorships[8].institutions[0].ror | https://ror.org/05dq2gs74 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Vanderbilt University Medical Center |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Cheng Gao |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | 1 Vanderbilt University Medical Center, Nashville, TN, USA. |
| authorships[9].author.id | https://openalex.org/A5032086600 |
| authorships[9].author.orcid | https://orcid.org/0009-0009-5377-0037 |
| authorships[9].author.display_name | Steve Nyemba |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[9].affiliations[0].raw_affiliation_string | Vanderbilt University Medical Center, Nashville TN, USA. |
| authorships[9].institutions[0].id | https://openalex.org/I901861585 |
| authorships[9].institutions[0].ror | https://ror.org/05dq2gs74 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Vanderbilt University Medical Center |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Steve Nyemba |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Vanderbilt University Medical Center, Nashville TN, USA. |
| authorships[10].author.id | https://openalex.org/A5057765100 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-7206-0059 |
| authorships[10].author.display_name | Min Xu |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I4210156936 |
| authorships[10].affiliations[0].raw_affiliation_string | IBM Research (USA) |
| authorships[10].institutions[0].id | https://openalex.org/I4210156936 |
| authorships[10].institutions[0].ror | https://ror.org/05gjbbg60 |
| authorships[10].institutions[0].type | facility |
| authorships[10].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210156936 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | IBM Research - Austin |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Xu Min |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | IBM Research (USA) |
| authorships[11].author.id | https://openalex.org/A5025440223 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Sanjib Basak |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[11].affiliations[0].raw_affiliation_string | IBM Watson Health, USA. |
| authorships[11].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[11].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[11].institutions[0].type | company |
| authorships[11].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | IBM (United States) |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Sanjib Basak |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | IBM Watson Health, USA. |
| authorships[12].author.id | https://openalex.org/A5057905718 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-3169-4346 |
| authorships[12].author.display_name | Mohamed Ghalwash |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I4210156936 |
| authorships[12].affiliations[0].raw_affiliation_string | IBM Research (USA) |
| authorships[12].institutions[0].id | https://openalex.org/I4210156936 |
| authorships[12].institutions[0].ror | https://ror.org/05gjbbg60 |
| authorships[12].institutions[0].type | facility |
| authorships[12].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210156936 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | IBM Research - Austin |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Mohamed Ghalwash |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | IBM Research (USA) |
| authorships[13].author.id | https://openalex.org/A5042387576 |
| authorships[13].author.orcid | https://orcid.org/0000-0003-1014-8837 |
| authorships[13].author.display_name | Zach Shahn |
| authorships[13].countries | US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I4210156936 |
| authorships[13].affiliations[0].raw_affiliation_string | IBM Research (USA) |
| authorships[13].institutions[0].id | https://openalex.org/I4210156936 |
| authorships[13].institutions[0].ror | https://ror.org/05gjbbg60 |
| authorships[13].institutions[0].type | facility |
| authorships[13].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210156936 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | IBM Research - Austin |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Zach Shahn |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | IBM Research (USA) |
| authorships[14].author.id | https://openalex.org/A5013052512 |
| authorships[14].author.orcid | |
| authorships[14].author.display_name | Parthasararathy Suryanarayanan |
| authorships[14].countries | US |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I4210156936 |
| authorships[14].affiliations[0].raw_affiliation_string | IBM Research (USA) |
| authorships[14].institutions[0].id | https://openalex.org/I4210156936 |
| authorships[14].institutions[0].ror | https://ror.org/05gjbbg60 |
| authorships[14].institutions[0].type | facility |
| authorships[14].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210156936 |
| authorships[14].institutions[0].country_code | US |
| authorships[14].institutions[0].display_name | IBM Research - Austin |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Parthasararathy Suryanarayanan |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | IBM Research (USA) |
| authorships[15].author.id | https://openalex.org/A5026449580 |
| authorships[15].author.orcid | |
| authorships[15].author.display_name | Italo Buleje |
| authorships[15].countries | US |
| authorships[15].affiliations[0].institution_ids | https://openalex.org/I4210156936 |
| authorships[15].affiliations[0].raw_affiliation_string | IBM Research (USA) |
| authorships[15].institutions[0].id | https://openalex.org/I4210156936 |
| authorships[15].institutions[0].ror | https://ror.org/05gjbbg60 |
| authorships[15].institutions[0].type | facility |
| authorships[15].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210156936 |
| authorships[15].institutions[0].country_code | US |
| authorships[15].institutions[0].display_name | IBM Research - Austin |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Italo Buleje |
| authorships[15].is_corresponding | False |
| authorships[15].raw_affiliation_strings | IBM Research (USA) |
| authorships[16].author.id | https://openalex.org/A5027788274 |
| authorships[16].author.orcid | |
| authorships[16].author.display_name | Shannon Harrer |
| authorships[16].countries | US |
| authorships[16].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[16].affiliations[0].raw_affiliation_string | IBM Watson Health, USA. |
| authorships[16].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[16].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[16].institutions[0].type | company |
| authorships[16].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[16].institutions[0].country_code | US |
| authorships[16].institutions[0].display_name | IBM (United States) |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Shannon Harrer |
| authorships[16].is_corresponding | False |
| authorships[16].raw_affiliation_strings | IBM Watson Health, USA. |
| authorships[17].author.id | https://openalex.org/A5035506267 |
| authorships[17].author.orcid | https://orcid.org/0000-0001-8173-5129 |
| authorships[17].author.display_name | Sarah Miller |
| authorships[17].countries | US |
| authorships[17].affiliations[0].institution_ids | https://openalex.org/I4210156936 |
| authorships[17].affiliations[0].raw_affiliation_string | IBM Research (USA) |
| authorships[17].institutions[0].id | https://openalex.org/I4210156936 |
| authorships[17].institutions[0].ror | https://ror.org/05gjbbg60 |
| authorships[17].institutions[0].type | facility |
| authorships[17].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210156936 |
| authorships[17].institutions[0].country_code | US |
| authorships[17].institutions[0].display_name | IBM Research - Austin |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Sarah Miller |
| authorships[17].is_corresponding | False |
| authorships[17].raw_affiliation_strings | IBM Research (USA) |
| authorships[18].author.id | https://openalex.org/A5067373168 |
| authorships[18].author.orcid | https://orcid.org/0000-0003-2257-9044 |
| authorships[18].author.display_name | Amol Rajmane |
| authorships[18].countries | US |
| authorships[18].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[18].affiliations[0].raw_affiliation_string | IBM Watson Health, USA. |
| authorships[18].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[18].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[18].institutions[0].type | company |
| authorships[18].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[18].institutions[0].country_code | US |
| authorships[18].institutions[0].display_name | IBM (United States) |
| authorships[18].author_position | middle |
| authorships[18].raw_author_name | Amol Rajmane |
| authorships[18].is_corresponding | False |
| authorships[18].raw_affiliation_strings | IBM Watson Health, USA. |
| authorships[19].author.id | https://openalex.org/A5064356374 |
| authorships[19].author.orcid | https://orcid.org/0000-0002-9379-2056 |
| authorships[19].author.display_name | Colin G. Walsh |
| authorships[19].countries | US |
| authorships[19].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[19].affiliations[0].raw_affiliation_string | Vanderbilt University; Nashville TN USA |
| authorships[19].institutions[0].id | https://openalex.org/I200719446 |
| authorships[19].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[19].institutions[0].type | education |
| authorships[19].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[19].institutions[0].country_code | US |
| authorships[19].institutions[0].display_name | Vanderbilt University |
| authorships[19].author_position | middle |
| authorships[19].raw_author_name | Colin Walsh |
| authorships[19].is_corresponding | False |
| authorships[19].raw_affiliation_strings | Vanderbilt University; Nashville TN USA |
| authorships[20].author.id | https://openalex.org/A5073290483 |
| authorships[20].author.orcid | https://orcid.org/0000-0002-3119-6873 |
| authorships[20].author.display_name | Jonathan P. Wanderer |
| authorships[20].countries | US |
| authorships[20].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[20].affiliations[0].raw_affiliation_string | Vanderbilt University; Nashville TN USA |
| authorships[20].institutions[0].id | https://openalex.org/I200719446 |
| authorships[20].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[20].institutions[0].type | education |
| authorships[20].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[20].institutions[0].country_code | US |
| authorships[20].institutions[0].display_name | Vanderbilt University |
| authorships[20].author_position | middle |
| authorships[20].raw_author_name | Jonathan Wanderer |
| authorships[20].is_corresponding | False |
| authorships[20].raw_affiliation_strings | Vanderbilt University; Nashville TN USA |
| authorships[21].author.id | https://openalex.org/A5070520478 |
| authorships[21].author.orcid | |
| authorships[21].author.display_name | Gigi Yuen Reed |
| authorships[21].countries | US |
| authorships[21].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[21].affiliations[0].raw_affiliation_string | IBM Watson Health, USA. |
| authorships[21].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[21].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[21].institutions[0].type | company |
| authorships[21].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[21].institutions[0].country_code | US |
| authorships[21].institutions[0].display_name | IBM (United States) |
| authorships[21].author_position | middle |
| authorships[21].raw_author_name | Gigi Yuen Reed |
| authorships[21].is_corresponding | False |
| authorships[21].raw_affiliation_strings | IBM Watson Health, USA. |
| authorships[22].author.id | https://openalex.org/A5070430680 |
| authorships[22].author.orcid | https://orcid.org/0000-0003-0792-070X |
| authorships[22].author.display_name | Kenney Ng |
| authorships[22].countries | US |
| authorships[22].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[22].affiliations[0].raw_affiliation_string | IBM Watson Health, USA. |
| authorships[22].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[22].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[22].institutions[0].type | company |
| authorships[22].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[22].institutions[0].country_code | US |
| authorships[22].institutions[0].display_name | IBM (United States) |
| authorships[22].author_position | middle |
| authorships[22].raw_author_name | Kenney Ng |
| authorships[22].is_corresponding | False |
| authorships[22].raw_affiliation_strings | IBM Watson Health, USA. |
| authorships[23].author.id | https://openalex.org/A5042350438 |
| authorships[23].author.orcid | https://orcid.org/0000-0003-2227-5243 |
| authorships[23].author.display_name | Daby Sow |
| authorships[23].countries | US |
| authorships[23].affiliations[0].institution_ids | https://openalex.org/I4210156936 |
| authorships[23].affiliations[0].raw_affiliation_string | IBM Research (USA) |
| authorships[23].institutions[0].id | https://openalex.org/I4210156936 |
| authorships[23].institutions[0].ror | https://ror.org/05gjbbg60 |
| authorships[23].institutions[0].type | facility |
| authorships[23].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210156936 |
| authorships[23].institutions[0].country_code | US |
| authorships[23].institutions[0].display_name | IBM Research - Austin |
| authorships[23].author_position | middle |
| authorships[23].raw_author_name | Daby Sow |
| authorships[23].is_corresponding | False |
| authorships[23].raw_affiliation_strings | IBM Research (USA) |
| authorships[24].author.id | https://openalex.org/A5090647314 |
| authorships[24].author.orcid | https://orcid.org/0000-0003-3040-5175 |
| authorships[24].author.display_name | Bradley Malin |
| authorships[24].countries | US |
| authorships[24].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[24].affiliations[0].raw_affiliation_string | Vanderbilt University Medical Center, Nashville, TN, USA |
| authorships[24].affiliations[1].institution_ids | https://openalex.org/I200719446 |
| authorships[24].affiliations[1].raw_affiliation_string | Vanderbilt University, Nashville, TN, USA. |
| authorships[24].institutions[0].id | https://openalex.org/I200719446 |
| authorships[24].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[24].institutions[0].type | education |
| authorships[24].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[24].institutions[0].country_code | US |
| authorships[24].institutions[0].display_name | Vanderbilt University |
| authorships[24].institutions[1].id | https://openalex.org/I901861585 |
| authorships[24].institutions[1].ror | https://ror.org/05dq2gs74 |
| authorships[24].institutions[1].type | healthcare |
| authorships[24].institutions[1].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[24].institutions[1].country_code | US |
| authorships[24].institutions[1].display_name | Vanderbilt University Medical Center |
| authorships[24].author_position | last |
| authorships[24].raw_author_name | Bradley A. Malin |
| authorships[24].is_corresponding | False |
| authorships[24].raw_affiliation_strings | Vanderbilt University Medical Center, Nashville, TN, USA, Vanderbilt University, Nashville, TN, USA. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2104.04377 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W3208559751, https://openalex.org/W2534350998, https://openalex.org/W2978151859, https://openalex.org/W2191167248, https://openalex.org/W2901398419, https://openalex.org/W2949638244, https://openalex.org/W2994967188, https://openalex.org/W2734893472, https://openalex.org/W3048492760, https://openalex.org/W3044461961, https://openalex.org/W2910750801, https://openalex.org/W3080444212, https://openalex.org/W2891512033, https://openalex.org/W3161651176, https://openalex.org/W2904910852, https://openalex.org/W2976395159, https://openalex.org/W2042954874, https://openalex.org/W3037947124, https://openalex.org/W2904108909, https://openalex.org/W2950279864 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:2104.04377 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2104.04377 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2104.04377 |
| primary_location.id | pmid:34457127 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306525036 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | PubMed |
| primary_location.source.host_organization | https://openalex.org/I1299303238 |
| primary_location.source.host_organization_name | National Institutes of Health |
| primary_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science |
| primary_location.landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34457127 |
| publication_date | 2021-04-09 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 107, 112, 119, 134 |
| abstract_inverted_index.30 | 39 |
| abstract_inverted_index.In | 72 |
| abstract_inverted_index.We | 129 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.as | 36 |
| abstract_inverted_index.at | 38, 98 |
| abstract_inverted_index.be | 84 |
| abstract_inverted_index.by | 86, 118 |
| abstract_inverted_index.in | 11, 23, 58 |
| abstract_inverted_index.of | 15, 80, 114 |
| abstract_inverted_index.on | 63, 133 |
| abstract_inverted_index.to | 26, 43, 94 |
| abstract_inverted_index.we | 75, 105 |
| abstract_inverted_index.and | 66, 138 |
| abstract_inverted_index.are | 61 |
| abstract_inverted_index.can | 83 |
| abstract_inverted_index.due | 42 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.how | 77 |
| abstract_inverted_index.par | 64 |
| abstract_inverted_index.the | 78, 141, 145 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.More | 103 |
| abstract_inverted_index.been | 21 |
| abstract_inverted_index.data | 10, 44, 116 |
| abstract_inverted_index.deep | 69, 81, 91 |
| abstract_inverted_index.have | 3, 20 |
| abstract_inverted_index.show | 139 |
| abstract_inverted_index.such | 35 |
| abstract_inverted_index.that | 54, 110, 140 |
| abstract_inverted_index.this | 73 |
| abstract_inverted_index.wide | 13 |
| abstract_inverted_index.with | 125 |
| abstract_inverted_index.based | 121 |
| abstract_inverted_index.data, | 34 |
| abstract_inverted_index.days, | 40 |
| abstract_inverted_index.embed | 55 |
| abstract_inverted_index.fuses | 111 |
| abstract_inverted_index.large | 135 |
| abstract_inverted_index.often | 62 |
| abstract_inverted_index.their | 24 |
| abstract_inverted_index.these | 18 |
| abstract_inverted_index.those | 53 |
| abstract_inverted_index.using | 31 |
| abstract_inverted_index.with, | 65 |
| abstract_inverted_index.claims | 33, 136 |
| abstract_inverted_index.domain | 56, 88 |
| abstract_inverted_index.events | 97 |
| abstract_inverted_index.issue. | 46 |
| abstract_inverted_index.mainly | 41 |
| abstract_inverted_index.method | 143 |
| abstract_inverted_index.neural | 123 |
| abstract_inverted_index.paper, | 74 |
| abstract_inverted_index.within | 90 |
| abstract_inverted_index.ability | 25 |
| abstract_inverted_index.adverse | 96 |
| abstract_inverted_index.blended | 142 |
| abstract_inverted_index.complex | 9, 28 |
| abstract_inverted_index.conduct | 130 |
| abstract_inverted_index.dataset | 137 |
| abstract_inverted_index.limited | 22 |
| abstract_inverted_index.machine | 49, 147 |
| abstract_inverted_index.patient | 115 |
| abstract_inverted_index.predict | 95 |
| abstract_inverted_index.support | 27 |
| abstract_inverted_index.variety | 14 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.achieved | 85 |
| abstract_inverted_index.blending | 87 |
| abstract_inverted_index.computed | 117 |
| abstract_inverted_index.domains. | 16 |
| abstract_inverted_index.hospital | 99 |
| abstract_inverted_index.learning | 1, 50, 70, 82, 92, 108, 148 |
| abstract_inverted_index.methods, | 51 |
| abstract_inverted_index.modeling | 8 |
| abstract_inverted_index.network, | 124 |
| abstract_inverted_index.problems | 30 |
| abstract_inverted_index.relevant | 127 |
| abstract_inverted_index.sparsity | 45 |
| abstract_inverted_index.standard | 146 |
| abstract_inverted_index.classical | 48 |
| abstract_inverted_index.extensive | 131 |
| abstract_inverted_index.extremely | 5 |
| abstract_inverted_index.features, | 60 |
| abstract_inverted_index.features. | 128 |
| abstract_inverted_index.including | 101 |
| abstract_inverted_index.insurance | 32 |
| abstract_inverted_index.introduce | 106 |
| abstract_inverted_index.knowledge | 57, 89 |
| abstract_inverted_index.potential | 79 |
| abstract_inverted_index.recurrent | 122 |
| abstract_inverted_index.sometimes | 67 |
| abstract_inverted_index.clinically | 126 |
| abstract_inverted_index.discharge, | 100 |
| abstract_inverted_index.especially | 52 |
| abstract_inverted_index.illustrate | 76 |
| abstract_inverted_index.prediction | 29 |
| abstract_inverted_index.approaches. | 71, 149 |
| abstract_inverted_index.experiments | 132 |
| abstract_inverted_index.handcrafted | 59 |
| abstract_inverted_index.outperform, | 68 |
| abstract_inverted_index.outperforms | 144 |
| abstract_inverted_index.readmission | 37 |
| abstract_inverted_index.architecture | 109 |
| abstract_inverted_index.Consequently, | 47 |
| abstract_inverted_index.architectures | 2, 19, 93 |
| abstract_inverted_index.high-capacity | 6 |
| abstract_inverted_index.readmissions. | 102 |
| abstract_inverted_index.specifically, | 104 |
| abstract_inverted_index.representation | 113 |
| abstract_inverted_index.self-attention | 120 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 25 |
| citation_normalized_percentile |