Blind and Neural Network-Guided Convolutional Beamformer for Joint Denoising, Dereverberation, and Source Separation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/icassp39728.2021.9414264
This paper proposes an approach for optimizing a Convolutional BeamFormer (CBF) that can jointly perform denoising (DN), dereverberation (DR), and source separation (SS). First, we develop a blind CBF optimization algorithm that requires no prior information on the sources or the room acoustics, by extending a conventional joint DR and SS method. For making the optimization computationally tractable, we incorporate two techniques into the approach: the Source-Wise Factorization (SW-Fact) of a CBF and the Independent Vector Extraction (IVE). To further improve the performance, we develop a method that integrates a neural network(NN) based source power spectra estimation with CBF optimization by an inverse-Gamma prior. Experiments using noisy reverberant mixtures reveal that our proposed method with both blind and NN-guided scenarios greatly outperforms the conventional state-of-the-art NN-supported mask-based CBF in terms of the improvement in automatic speech recognition and signal distortion reduction performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icassp39728.2021.9414264
- OA Status
- green
- Cited By
- 22
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3163391314
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3163391314Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icassp39728.2021.9414264Digital Object Identifier
- Title
-
Blind and Neural Network-Guided Convolutional Beamformer for Joint Denoising, Dereverberation, and Source SeparationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-13Full publication date if available
- Authors
-
Tomohiro Nakatani, Rintaro Ikeshita, Keisuke Kinoshita, Hiroshi Sawada, Shoko ArakiList of authors in order
- Landing page
-
https://doi.org/10.1109/icassp39728.2021.9414264Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2108.01836Direct OA link when available
- Concepts
-
Computer science, Blind signal separation, Noise reduction, Source separation, Convolutional neural network, Speech enhancement, Reduction (mathematics), Distortion (music), Joint (building), Speech recognition, Artificial intelligence, Pattern recognition (psychology), Noise (video), Algorithm, Mathematics, Engineering, Computer network, Architectural engineering, Amplifier, Image (mathematics), Channel (broadcasting), Bandwidth (computing), GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 6, 2023: 4, 2022: 6, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3163391314 |
|---|---|
| doi | https://doi.org/10.1109/icassp39728.2021.9414264 |
| ids.doi | https://doi.org/10.1109/icassp39728.2021.9414264 |
| ids.mag | 3163391314 |
| ids.openalex | https://openalex.org/W3163391314 |
| fwci | 2.73561099 |
| type | article |
| title | Blind and Neural Network-Guided Convolutional Beamformer for Joint Denoising, Dereverberation, and Source Separation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10860 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Speech and Audio Processing |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T11309 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9966999888420105 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Music and Audio Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8030173778533936 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C120317606 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7397157549858093 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17105967 |
| concepts[1].display_name | Blind signal separation |
| concepts[2].id | https://openalex.org/C163294075 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6211844086647034 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[2].display_name | Noise reduction |
| concepts[3].id | https://openalex.org/C2776864781 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5612255930900574 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q52617913 |
| concepts[3].display_name | Source separation |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5411171317100525 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C2776182073 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5075875520706177 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7575395 |
| concepts[5].display_name | Speech enhancement |
| concepts[6].id | https://openalex.org/C111335779 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4961150586605072 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[6].display_name | Reduction (mathematics) |
| concepts[7].id | https://openalex.org/C126780896 |
| concepts[7].level | 4 |
| concepts[7].score | 0.4897024929523468 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q899871 |
| concepts[7].display_name | Distortion (music) |
| concepts[8].id | https://openalex.org/C18555067 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47739213705062866 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[8].display_name | Joint (building) |
| concepts[9].id | https://openalex.org/C28490314 |
| concepts[9].level | 1 |
| concepts[9].score | 0.46197429299354553 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[9].display_name | Speech recognition |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4531576335430145 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.44395753741264343 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C99498987 |
| concepts[12].level | 3 |
| concepts[12].score | 0.43263566493988037 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[12].display_name | Noise (video) |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3251023292541504 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.12359380722045898 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.06429147720336914 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C31258907 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[16].display_name | Computer network |
| concepts[17].id | https://openalex.org/C170154142 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[17].display_name | Architectural engineering |
| concepts[18].id | https://openalex.org/C194257627 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q211554 |
| concepts[18].display_name | Amplifier |
| concepts[19].id | https://openalex.org/C115961682 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[19].display_name | Image (mathematics) |
| concepts[20].id | https://openalex.org/C127162648 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[20].display_name | Channel (broadcasting) |
| concepts[21].id | https://openalex.org/C2776257435 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[21].display_name | Bandwidth (computing) |
| concepts[22].id | https://openalex.org/C2524010 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[22].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8030173778533936 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/blind-signal-separation |
| keywords[1].score | 0.7397157549858093 |
| keywords[1].display_name | Blind signal separation |
| keywords[2].id | https://openalex.org/keywords/noise-reduction |
| keywords[2].score | 0.6211844086647034 |
| keywords[2].display_name | Noise reduction |
| keywords[3].id | https://openalex.org/keywords/source-separation |
| keywords[3].score | 0.5612255930900574 |
| keywords[3].display_name | Source separation |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5411171317100525 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/speech-enhancement |
| keywords[5].score | 0.5075875520706177 |
| keywords[5].display_name | Speech enhancement |
| keywords[6].id | https://openalex.org/keywords/reduction |
| keywords[6].score | 0.4961150586605072 |
| keywords[6].display_name | Reduction (mathematics) |
| keywords[7].id | https://openalex.org/keywords/distortion |
| keywords[7].score | 0.4897024929523468 |
| keywords[7].display_name | Distortion (music) |
| keywords[8].id | https://openalex.org/keywords/joint |
| keywords[8].score | 0.47739213705062866 |
| keywords[8].display_name | Joint (building) |
| keywords[9].id | https://openalex.org/keywords/speech-recognition |
| keywords[9].score | 0.46197429299354553 |
| keywords[9].display_name | Speech recognition |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.4531576335430145 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.44395753741264343 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/noise |
| keywords[12].score | 0.43263566493988037 |
| keywords[12].display_name | Noise (video) |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.3251023292541504 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.12359380722045898 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.06429147720336914 |
| keywords[15].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/icassp39728.2021.9414264 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| locations[0].landing_page_url | https://doi.org/10.1109/icassp39728.2021.9414264 |
| locations[1].id | pmh:oai:arXiv.org:2108.01836 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2108.01836 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2108.01836 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5021240106 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7487-7150 |
| authorships[0].author.display_name | Tomohiro Nakatani |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2251713219 |
| authorships[0].affiliations[0].raw_affiliation_string | NTT Corporation, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I2251713219 |
| authorships[0].institutions[0].ror | https://ror.org/00berct97 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I2251713219 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | NTT (Japan) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tomohiro Nakatani |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | NTT Corporation, Japan |
| authorships[1].author.id | https://openalex.org/A5084590882 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2608-1999 |
| authorships[1].author.display_name | Rintaro Ikeshita |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2251713219 |
| authorships[1].affiliations[0].raw_affiliation_string | NTT Corporation, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I2251713219 |
| authorships[1].institutions[0].ror | https://ror.org/00berct97 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I2251713219 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | NTT (Japan) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rintaro Ikeshita |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | NTT Corporation, Japan |
| authorships[2].author.id | https://openalex.org/A5069398831 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-7987-8188 |
| authorships[2].author.display_name | Keisuke Kinoshita |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2251713219 |
| authorships[2].affiliations[0].raw_affiliation_string | NTT Corporation, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I2251713219 |
| authorships[2].institutions[0].ror | https://ror.org/00berct97 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I2251713219 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | NTT (Japan) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Keisuke Kinoshita |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | NTT Corporation, Japan |
| authorships[3].author.id | https://openalex.org/A5007032557 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4831-9286 |
| authorships[3].author.display_name | Hiroshi Sawada |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2251713219 |
| authorships[3].affiliations[0].raw_affiliation_string | NTT Corporation, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I2251713219 |
| authorships[3].institutions[0].ror | https://ror.org/00berct97 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I2251713219 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | NTT (Japan) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hiroshi Sawada |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | NTT Corporation, Japan |
| authorships[4].author.id | https://openalex.org/A5009309584 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4363-4305 |
| authorships[4].author.display_name | Shoko Araki |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2251713219 |
| authorships[4].affiliations[0].raw_affiliation_string | NTT Corporation, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I2251713219 |
| authorships[4].institutions[0].ror | https://ror.org/00berct97 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I2251713219 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | NTT (Japan) |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Shoko Araki |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | NTT Corporation, Japan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2108.01836 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Blind and Neural Network-Guided Convolutional Beamformer for Joint Denoising, Dereverberation, and Source Separation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10860 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Speech and Audio Processing |
| related_works | https://openalex.org/W1509813908, https://openalex.org/W2031820693, https://openalex.org/W3024816962, https://openalex.org/W973023320, https://openalex.org/W1910172735, https://openalex.org/W2118307209, https://openalex.org/W2107364365, https://openalex.org/W2107688514, https://openalex.org/W2137288760, https://openalex.org/W3121710301 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2108.01836 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2108.01836 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2108.01836 |
| primary_location.id | doi:10.1109/icassp39728.2021.9414264 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| primary_location.landing_page_url | https://doi.org/10.1109/icassp39728.2021.9414264 |
| publication_date | 2021-05-13 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6631362777, https://openalex.org/W2952218014, https://openalex.org/W2972693890, https://openalex.org/W2114461480, https://openalex.org/W2031583051, https://openalex.org/W2141998673, https://openalex.org/W2144404214, https://openalex.org/W2242685705, https://openalex.org/W4205778870, https://openalex.org/W2170768669, https://openalex.org/W1543386260, https://openalex.org/W2164502538, https://openalex.org/W6604498989, https://openalex.org/W2408744528, https://openalex.org/W2747732471, https://openalex.org/W2954049404, https://openalex.org/W2963375116, https://openalex.org/W2014768838, https://openalex.org/W2702006285, https://openalex.org/W1482149378, https://openalex.org/W2997453778, https://openalex.org/W2640112133, https://openalex.org/W2972492143, https://openalex.org/W2107992675, https://openalex.org/W6730678351, https://openalex.org/W3096073522, https://openalex.org/W3028504434, https://openalex.org/W6661582794, https://openalex.org/W2099741732, https://openalex.org/W2042860487, https://openalex.org/W2800675406, https://openalex.org/W2951431217, https://openalex.org/W3096752279, https://openalex.org/W2997688633, https://openalex.org/W3127348940, https://openalex.org/W3099177480, https://openalex.org/W108815450, https://openalex.org/W3099330747, https://openalex.org/W2043216213, https://openalex.org/W4211083646, https://openalex.org/W1548802052, https://openalex.org/W1524333225, https://openalex.org/W2563666542 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 7, 26, 45, 70, 85, 89 |
| abstract_inverted_index.DR | 48 |
| abstract_inverted_index.SS | 50 |
| abstract_inverted_index.To | 78 |
| abstract_inverted_index.an | 3, 101 |
| abstract_inverted_index.by | 43, 100 |
| abstract_inverted_index.in | 128, 133 |
| abstract_inverted_index.no | 33 |
| abstract_inverted_index.of | 69, 130 |
| abstract_inverted_index.on | 36 |
| abstract_inverted_index.or | 39 |
| abstract_inverted_index.we | 24, 58, 83 |
| abstract_inverted_index.CBF | 28, 71, 98, 127 |
| abstract_inverted_index.For | 52 |
| abstract_inverted_index.and | 19, 49, 72, 117, 137 |
| abstract_inverted_index.can | 12 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.our | 111 |
| abstract_inverted_index.the | 37, 40, 54, 63, 65, 73, 81, 122, 131 |
| abstract_inverted_index.two | 60 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.both | 115 |
| abstract_inverted_index.into | 62 |
| abstract_inverted_index.room | 41 |
| abstract_inverted_index.that | 11, 31, 87, 110 |
| abstract_inverted_index.with | 97, 114 |
| abstract_inverted_index.(CBF) | 10 |
| abstract_inverted_index.(DN), | 16 |
| abstract_inverted_index.(DR), | 18 |
| abstract_inverted_index.(SS). | 22 |
| abstract_inverted_index.based | 92 |
| abstract_inverted_index.blind | 27, 116 |
| abstract_inverted_index.joint | 47 |
| abstract_inverted_index.noisy | 106 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.power | 94 |
| abstract_inverted_index.prior | 34 |
| abstract_inverted_index.terms | 129 |
| abstract_inverted_index.using | 105 |
| abstract_inverted_index.(IVE). | 77 |
| abstract_inverted_index.First, | 23 |
| abstract_inverted_index.Vector | 75 |
| abstract_inverted_index.making | 53 |
| abstract_inverted_index.method | 86, 113 |
| abstract_inverted_index.neural | 90 |
| abstract_inverted_index.prior. | 103 |
| abstract_inverted_index.reveal | 109 |
| abstract_inverted_index.signal | 138 |
| abstract_inverted_index.source | 20, 93 |
| abstract_inverted_index.speech | 135 |
| abstract_inverted_index.develop | 25, 84 |
| abstract_inverted_index.further | 79 |
| abstract_inverted_index.greatly | 120 |
| abstract_inverted_index.improve | 80 |
| abstract_inverted_index.jointly | 13 |
| abstract_inverted_index.method. | 51 |
| abstract_inverted_index.perform | 14 |
| abstract_inverted_index.sources | 38 |
| abstract_inverted_index.spectra | 95 |
| abstract_inverted_index.approach | 4 |
| abstract_inverted_index.mixtures | 108 |
| abstract_inverted_index.proposed | 112 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.requires | 32 |
| abstract_inverted_index.(SW-Fact) | 68 |
| abstract_inverted_index.NN-guided | 118 |
| abstract_inverted_index.algorithm | 30 |
| abstract_inverted_index.approach: | 64 |
| abstract_inverted_index.automatic | 134 |
| abstract_inverted_index.denoising | 15 |
| abstract_inverted_index.extending | 44 |
| abstract_inverted_index.reduction | 140 |
| abstract_inverted_index.scenarios | 119 |
| abstract_inverted_index.BeamFormer | 9 |
| abstract_inverted_index.Extraction | 76 |
| abstract_inverted_index.acoustics, | 42 |
| abstract_inverted_index.distortion | 139 |
| abstract_inverted_index.estimation | 96 |
| abstract_inverted_index.integrates | 88 |
| abstract_inverted_index.mask-based | 126 |
| abstract_inverted_index.optimizing | 6 |
| abstract_inverted_index.separation | 21 |
| abstract_inverted_index.techniques | 61 |
| abstract_inverted_index.tractable, | 57 |
| abstract_inverted_index.Experiments | 104 |
| abstract_inverted_index.Independent | 74 |
| abstract_inverted_index.Source-Wise | 66 |
| abstract_inverted_index.improvement | 132 |
| abstract_inverted_index.incorporate | 59 |
| abstract_inverted_index.information | 35 |
| abstract_inverted_index.network(NN) | 91 |
| abstract_inverted_index.outperforms | 121 |
| abstract_inverted_index.recognition | 136 |
| abstract_inverted_index.reverberant | 107 |
| abstract_inverted_index.NN-supported | 125 |
| abstract_inverted_index.conventional | 46, 123 |
| abstract_inverted_index.optimization | 29, 55, 99 |
| abstract_inverted_index.performance, | 82 |
| abstract_inverted_index.performance. | 141 |
| abstract_inverted_index.Convolutional | 8 |
| abstract_inverted_index.Factorization | 67 |
| abstract_inverted_index.inverse-Gamma | 102 |
| abstract_inverted_index.computationally | 56 |
| abstract_inverted_index.dereverberation | 17 |
| abstract_inverted_index.state-of-the-art | 124 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.91850051 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |