Blind Interleaver Parameters Estimation Using Kolmogorov–Smirnov Test Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/s21103458
The use of error-correcting codes (ECCs) is essential for designing reliable digital communication systems. Usually, most systems correct errors under cooperative environments. If receivers do not know interleaver parameters, they must first find out them to decode. In this paper, a blind interleaver parameters estimation method is proposed using the Kolmogorov–Smirnov (K–S) test. We exploit the fact that rank distributions of square matrices of linear codes differ from those of random sequences owing to the linear dependence of linear codes. We use the K–S test to make decision whether two groups are extracted from the same distribution. The K–S test value is used as a measure to find the most different rank distribution for the blind interleaver parameters estimation. In addition to control false alarm rates, multinomial distribution is used to calculate the probability that the most different rank distribution will occur. By exploiting those, we can estimate the interleaver period with relatively low complexity. Experimental results show that the proposed algorithm outperforms previous methods regardless of the bit error rate.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s21103458
- https://www.mdpi.com/1424-8220/21/10/3458/pdf?version=1621310513
- OA Status
- gold
- Cited By
- 4
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3162190107
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3162190107Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s21103458Digital Object Identifier
- Title
-
Blind Interleaver Parameters Estimation Using Kolmogorov–Smirnov TestWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-15Full publication date if available
- Authors
-
Seungwoo Wee, Changryoul Choi, Jechang JeongList of authors in order
- Landing page
-
https://doi.org/10.3390/s21103458Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/21/10/3458/pdf?version=1621310513Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/21/10/3458/pdf?version=1621310513Direct OA link when available
- Concepts
-
Multinomial distribution, Algorithm, Rank (graph theory), False alarm, Mathematics, Kolmogorov–Smirnov test, Constant false alarm rate, Computer science, Statistics, Statistical hypothesis testing, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3162190107 |
|---|---|
| doi | https://doi.org/10.3390/s21103458 |
| ids.doi | https://doi.org/10.3390/s21103458 |
| ids.mag | 3162190107 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34063544 |
| ids.openalex | https://openalex.org/W3162190107 |
| fwci | 0.43193858 |
| type | article |
| title | Blind Interleaver Parameters Estimation Using Kolmogorov–Smirnov Test |
| biblio.issue | 10 |
| biblio.volume | 21 |
| biblio.last_page | 3458 |
| biblio.first_page | 3458 |
| topics[0].id | https://openalex.org/T11447 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Blind Source Separation Techniques |
| topics[1].id | https://openalex.org/T12131 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Wireless Signal Modulation Classification |
| topics[2].id | https://openalex.org/T11321 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9979000091552734 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Error Correcting Code Techniques |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C192065140 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6073889136314392 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1147928 |
| concepts[0].display_name | Multinomial distribution |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5928673148155212 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C164226766 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5756208300590515 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[2].display_name | Rank (graph theory) |
| concepts[3].id | https://openalex.org/C2776836416 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5469056963920593 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1364844 |
| concepts[3].display_name | False alarm |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4932813048362732 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C82581908 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4910471439361572 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q575766 |
| concepts[5].display_name | Kolmogorov–Smirnov test |
| concepts[6].id | https://openalex.org/C77052588 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48043131828308105 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q644307 |
| concepts[6].display_name | Constant false alarm rate |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.47440361976623535 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45099732279777527 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C87007009 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4107629954814911 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q210832 |
| concepts[9].display_name | Statistical hypothesis testing |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/multinomial-distribution |
| keywords[0].score | 0.6073889136314392 |
| keywords[0].display_name | Multinomial distribution |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.5928673148155212 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/rank |
| keywords[2].score | 0.5756208300590515 |
| keywords[2].display_name | Rank (graph theory) |
| keywords[3].id | https://openalex.org/keywords/false-alarm |
| keywords[3].score | 0.5469056963920593 |
| keywords[3].display_name | False alarm |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.4932813048362732 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/kolmogorov–smirnov-test |
| keywords[5].score | 0.4910471439361572 |
| keywords[5].display_name | Kolmogorov–Smirnov test |
| keywords[6].id | https://openalex.org/keywords/constant-false-alarm-rate |
| keywords[6].score | 0.48043131828308105 |
| keywords[6].display_name | Constant false alarm rate |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.47440361976623535 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.45099732279777527 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/statistical-hypothesis-testing |
| keywords[9].score | 0.4107629954814911 |
| keywords[9].display_name | Statistical hypothesis testing |
| language | en |
| locations[0].id | doi:10.3390/s21103458 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/21/10/3458/pdf?version=1621310513 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s21103458 |
| locations[1].id | pmid:34063544 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34063544 |
| locations[2].id | pmh:oai:doaj.org/article:517fd7832b7a4a1abb261cee5cd48b33 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 21, Iss 10, p 3458 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/517fd7832b7a4a1abb261cee5cd48b33 |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/21/10/3458/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 21; Issue 10; Pages: 3458 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s21103458 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:8155855 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8155855 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5030788869 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2182-2746 |
| authorships[0].author.display_name | Seungwoo Wee |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4575257 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea |
| authorships[0].institutions[0].id | https://openalex.org/I4575257 |
| authorships[0].institutions[0].ror | https://ror.org/046865y68 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4575257 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Hanyang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Seungwoo Wee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea |
| authorships[1].author.id | https://openalex.org/A5020010331 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2616-8333 |
| authorships[1].author.display_name | Changryoul Choi |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4575257 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea |
| authorships[1].institutions[0].id | https://openalex.org/I4575257 |
| authorships[1].institutions[0].ror | https://ror.org/046865y68 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4575257 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Hanyang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Changryoul Choi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea |
| authorships[2].author.id | https://openalex.org/A5018642097 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3759-3116 |
| authorships[2].author.display_name | Jechang Jeong |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4575257 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea |
| authorships[2].institutions[0].id | https://openalex.org/I4575257 |
| authorships[2].institutions[0].ror | https://ror.org/046865y68 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4575257 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Hanyang University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jechang Jeong |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/21/10/3458/pdf?version=1621310513 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Blind Interleaver Parameters Estimation Using Kolmogorov–Smirnov Test |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11447 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Blind Source Separation Techniques |
| related_works | https://openalex.org/W249541249, https://openalex.org/W2955220190, https://openalex.org/W1983393909, https://openalex.org/W2040150569, https://openalex.org/W2468095590, https://openalex.org/W2132174924, https://openalex.org/W1911540634, https://openalex.org/W2013909972, https://openalex.org/W2943190685, https://openalex.org/W825300807 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s21103458 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/21/10/3458/pdf?version=1621310513 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s21103458 |
| primary_location.id | doi:10.3390/s21103458 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/21/10/3458/pdf?version=1621310513 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s21103458 |
| publication_date | 2021-05-15 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W4206851464, https://openalex.org/W2011118865, https://openalex.org/W2896340553, https://openalex.org/W2782428203, https://openalex.org/W6764570156, https://openalex.org/W2620575490, https://openalex.org/W2790858236, https://openalex.org/W2955437913, https://openalex.org/W3015908042, https://openalex.org/W3107863907, https://openalex.org/W2142363115, https://openalex.org/W4255375128, https://openalex.org/W1039408773, https://openalex.org/W2759918731, https://openalex.org/W2040075573, https://openalex.org/W2952788260 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 40, 104 |
| abstract_inverted_index.By | 142 |
| abstract_inverted_index.If | 22 |
| abstract_inverted_index.In | 37, 119 |
| abstract_inverted_index.We | 53, 80 |
| abstract_inverted_index.as | 103 |
| abstract_inverted_index.do | 24 |
| abstract_inverted_index.is | 6, 46, 101, 128 |
| abstract_inverted_index.of | 2, 60, 63, 69, 77, 166 |
| abstract_inverted_index.to | 35, 73, 85, 106, 121, 130 |
| abstract_inverted_index.we | 145 |
| abstract_inverted_index.The | 0, 97 |
| abstract_inverted_index.are | 91 |
| abstract_inverted_index.bit | 168 |
| abstract_inverted_index.can | 146 |
| abstract_inverted_index.for | 8, 113 |
| abstract_inverted_index.low | 153 |
| abstract_inverted_index.not | 25 |
| abstract_inverted_index.out | 33 |
| abstract_inverted_index.the | 49, 55, 74, 82, 94, 108, 114, 132, 135, 148, 159, 167 |
| abstract_inverted_index.two | 89 |
| abstract_inverted_index.use | 1, 81 |
| abstract_inverted_index.fact | 56 |
| abstract_inverted_index.find | 32, 107 |
| abstract_inverted_index.from | 67, 93 |
| abstract_inverted_index.know | 26 |
| abstract_inverted_index.make | 86 |
| abstract_inverted_index.most | 15, 109, 136 |
| abstract_inverted_index.must | 30 |
| abstract_inverted_index.rank | 58, 111, 138 |
| abstract_inverted_index.same | 95 |
| abstract_inverted_index.show | 157 |
| abstract_inverted_index.test | 84, 99 |
| abstract_inverted_index.that | 57, 134, 158 |
| abstract_inverted_index.them | 34 |
| abstract_inverted_index.they | 29 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.used | 102, 129 |
| abstract_inverted_index.will | 140 |
| abstract_inverted_index.with | 151 |
| abstract_inverted_index.K–S | 83, 98 |
| abstract_inverted_index.alarm | 124 |
| abstract_inverted_index.blind | 41, 115 |
| abstract_inverted_index.codes | 4, 65 |
| abstract_inverted_index.error | 169 |
| abstract_inverted_index.false | 123 |
| abstract_inverted_index.first | 31 |
| abstract_inverted_index.owing | 72 |
| abstract_inverted_index.rate. | 170 |
| abstract_inverted_index.test. | 52 |
| abstract_inverted_index.those | 68 |
| abstract_inverted_index.under | 19 |
| abstract_inverted_index.using | 48 |
| abstract_inverted_index.value | 100 |
| abstract_inverted_index.(ECCs) | 5 |
| abstract_inverted_index.codes. | 79 |
| abstract_inverted_index.differ | 66 |
| abstract_inverted_index.errors | 18 |
| abstract_inverted_index.groups | 90 |
| abstract_inverted_index.linear | 64, 75, 78 |
| abstract_inverted_index.method | 45 |
| abstract_inverted_index.occur. | 141 |
| abstract_inverted_index.paper, | 39 |
| abstract_inverted_index.period | 150 |
| abstract_inverted_index.random | 70 |
| abstract_inverted_index.rates, | 125 |
| abstract_inverted_index.square | 61 |
| abstract_inverted_index.those, | 144 |
| abstract_inverted_index.(K–S) | 51 |
| abstract_inverted_index.control | 122 |
| abstract_inverted_index.correct | 17 |
| abstract_inverted_index.decode. | 36 |
| abstract_inverted_index.digital | 11 |
| abstract_inverted_index.exploit | 54 |
| abstract_inverted_index.measure | 105 |
| abstract_inverted_index.methods | 164 |
| abstract_inverted_index.results | 156 |
| abstract_inverted_index.systems | 16 |
| abstract_inverted_index.whether | 88 |
| abstract_inverted_index.Usually, | 14 |
| abstract_inverted_index.addition | 120 |
| abstract_inverted_index.decision | 87 |
| abstract_inverted_index.estimate | 147 |
| abstract_inverted_index.matrices | 62 |
| abstract_inverted_index.previous | 163 |
| abstract_inverted_index.proposed | 47, 160 |
| abstract_inverted_index.reliable | 10 |
| abstract_inverted_index.systems. | 13 |
| abstract_inverted_index.algorithm | 161 |
| abstract_inverted_index.calculate | 131 |
| abstract_inverted_index.designing | 9 |
| abstract_inverted_index.different | 110, 137 |
| abstract_inverted_index.essential | 7 |
| abstract_inverted_index.extracted | 92 |
| abstract_inverted_index.receivers | 23 |
| abstract_inverted_index.sequences | 71 |
| abstract_inverted_index.dependence | 76 |
| abstract_inverted_index.estimation | 44 |
| abstract_inverted_index.exploiting | 143 |
| abstract_inverted_index.parameters | 43, 117 |
| abstract_inverted_index.regardless | 165 |
| abstract_inverted_index.relatively | 152 |
| abstract_inverted_index.complexity. | 154 |
| abstract_inverted_index.cooperative | 20 |
| abstract_inverted_index.estimation. | 118 |
| abstract_inverted_index.interleaver | 27, 42, 116, 149 |
| abstract_inverted_index.multinomial | 126 |
| abstract_inverted_index.outperforms | 162 |
| abstract_inverted_index.parameters, | 28 |
| abstract_inverted_index.probability | 133 |
| abstract_inverted_index.Experimental | 155 |
| abstract_inverted_index.distribution | 112, 127, 139 |
| abstract_inverted_index.communication | 12 |
| abstract_inverted_index.distribution. | 96 |
| abstract_inverted_index.distributions | 59 |
| abstract_inverted_index.environments. | 21 |
| abstract_inverted_index.error-correcting | 3 |
| abstract_inverted_index.Kolmogorov–Smirnov | 50 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5018642097 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4575257 |
| citation_normalized_percentile.value | 0.61041453 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |