Blockchain based electronic educational document management with role-based access control using machine learning model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-99683-5
The emergence of digital technology has led to a significant increase in the importance of educational credential storage, exchange, and verification for organisations, enterprises, and universities. Academic record forgery, record misuse, credential data tampering, time-consuming verification procedures, ownership and control difficulties, and other problems plague the education sector. Machine learning (ML) and blockchain, two of the most disruptive methods, have replaced traditional techniques in the education sector with highly technological and efficient ways. Our study aims to propose a novel electronic educational document management technique using a blockchain-based fuzzy feed-forward convolutional temporal neural network that detects malicious users. Here, the training is carried out based on NLP analysis in document word weight indexing. This document management access control is based on role-based access with simulated remora swarm optimisation. In order to identify malicious users, this suggested system logs access requests on the blockchain and authenticated users. The findings demonstrate that this suggested architecture performs as intended in every case. The experimental analysis is based on a malicious user detection dataset regarding Prediction accuracy, Mean average precision, F-measure, Latency, QoS, Contract execution time, and Throughput. Based on dataset feature analysis, the proposed B-FCTNN_SRSO achieved a prediction accuracy of 98%, a mean average precision (MAP) of 95%, and an F1 score of 97%, with a latency of 96%. Additionally, based on blockchain security analysis, the B-FCTNN_SRSO attained a QoS of 97%, a precision of 94%, and a throughput of 96%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-99683-5
- https://www.nature.com/articles/s41598-025-99683-5.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410869199
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410869199Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-99683-5Digital Object Identifier
- Title
-
Blockchain based electronic educational document management with role-based access control using machine learning modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-29Full publication date if available
- Authors
-
P. Chinnasamy, B. Subashini, Ramesh Kumar Ayyasamy, Ajmeera Kiran, Binay Kumar Pandey, Digvijay Pandey, Mesfin Esayas LelishoList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-99683-5Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-99683-5.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-99683-5.pdfDirect OA link when available
- Concepts
-
Computer science, Credential, Artificial intelligence, Machine learning, Access control, Quality of service, Convolutional neural network, Blockchain, Data mining, Computer security, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410869199 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-99683-5 |
| ids.doi | https://doi.org/10.1038/s41598-025-99683-5 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40442245 |
| ids.openalex | https://openalex.org/W4410869199 |
| fwci | 28.99101974 |
| type | article |
| title | Blockchain based electronic educational document management with role-based access control using machine learning model |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 18828 |
| biblio.first_page | 18828 |
| topics[0].id | https://openalex.org/T10270 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Blockchain Technology Applications and Security |
| topics[1].id | https://openalex.org/T14064 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9894000291824341 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Organizational and Employee Performance |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9692000150680542 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8304020166397095 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777810591 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6234850287437439 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q16861606 |
| concepts[1].display_name | Credential |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4975779354572296 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.48173120617866516 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C527821871 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4678780734539032 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228502 |
| concepts[4].display_name | Access control |
| concepts[5].id | https://openalex.org/C5119721 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46122199296951294 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q220501 |
| concepts[5].display_name | Quality of service |
| concepts[6].id | https://openalex.org/C81363708 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43974146246910095 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[6].display_name | Convolutional neural network |
| concepts[7].id | https://openalex.org/C2779687700 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4178404211997986 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q20514253 |
| concepts[7].display_name | Blockchain |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3521038889884949 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C38652104 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2348632514476776 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[9].display_name | Computer security |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1730523705482483 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8304020166397095 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/credential |
| keywords[1].score | 0.6234850287437439 |
| keywords[1].display_name | Credential |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4975779354572296 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.48173120617866516 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/access-control |
| keywords[4].score | 0.4678780734539032 |
| keywords[4].display_name | Access control |
| keywords[5].id | https://openalex.org/keywords/quality-of-service |
| keywords[5].score | 0.46122199296951294 |
| keywords[5].display_name | Quality of service |
| keywords[6].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[6].score | 0.43974146246910095 |
| keywords[6].display_name | Convolutional neural network |
| keywords[7].id | https://openalex.org/keywords/blockchain |
| keywords[7].score | 0.4178404211997986 |
| keywords[7].display_name | Blockchain |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3521038889884949 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/computer-security |
| keywords[9].score | 0.2348632514476776 |
| keywords[9].display_name | Computer security |
| keywords[10].id | https://openalex.org/keywords/computer-network |
| keywords[10].score | 0.1730523705482483 |
| keywords[10].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-99683-5 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-99683-5.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-99683-5 |
| locations[1].id | pmid:40442245 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40442245 |
| locations[2].id | pmh:oai:doaj.org/article:614fc261bee04889ba709ce78a2a49b5 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-19 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/614fc261bee04889ba709ce78a2a49b5 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12122687 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12122687 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5005688960 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3202-4299 |
| authorships[0].author.display_name | P. Chinnasamy |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I98499257 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, School of Computing, Kalasalingam Academy of Research and Engineering, Srivilliputtur, India. |
| authorships[0].institutions[0].id | https://openalex.org/I98499257 |
| authorships[0].institutions[0].ror | https://ror.org/04fm2fn75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I98499257 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Kalasalingam Academy of Research and Education |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | P Chinnasamy |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, School of Computing, Kalasalingam Academy of Research and Engineering, Srivilliputtur, India. |
| authorships[1].author.id | https://openalex.org/A5046206382 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1177-5082 |
| authorships[1].author.display_name | B. Subashini |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145286018 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Data Science and Business Systems, School of Computing, SRMIST, Kattankulathur, Chennai, India. |
| authorships[1].institutions[0].id | https://openalex.org/I145286018 |
| authorships[1].institutions[0].ror | https://ror.org/050113w36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145286018 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | SRM Institute of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | B Subashini |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Data Science and Business Systems, School of Computing, SRMIST, Kattankulathur, Chennai, India. |
| authorships[2].author.id | https://openalex.org/A5081926578 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3538-3887 |
| authorships[2].author.display_name | Ramesh Kumar Ayyasamy |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I931681460 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia. |
| authorships[2].institutions[0].id | https://openalex.org/I931681460 |
| authorships[2].institutions[0].ror | https://ror.org/050pq4m56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I931681460 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | Universiti Tunku Abdul Rahman |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ramesh Kumar Ayyasamy |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia. |
| authorships[3].author.id | https://openalex.org/A5087336365 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3826-4346 |
| authorships[3].author.display_name | Ajmeera Kiran |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad, India. |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ajmeera Kiran |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad, India. |
| authorships[4].author.id | https://openalex.org/A5055726807 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4041-1213 |
| authorships[4].author.display_name | Binay Kumar Pandey |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I252758333 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Information Technology, College of Technology, Govind Ballabh Pant University of Agriculture and Technology Pantnagar, Uttrarakhand, India. |
| authorships[4].institutions[0].id | https://openalex.org/I252758333 |
| authorships[4].institutions[0].ror | https://ror.org/02msjvh03 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I252758333 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Govind Ballabh Pant University of Agriculture and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Binay Kumar Pandey |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Information Technology, College of Technology, Govind Ballabh Pant University of Agriculture and Technology Pantnagar, Uttrarakhand, India. |
| authorships[5].author.id | https://openalex.org/A5047971894 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0353-174X |
| authorships[5].author.display_name | Digvijay Pandey |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2801491316 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Technical Education (Government of Uttar Pradesh), Kanpur, Uttar Pradesh, India. |
| authorships[5].institutions[0].id | https://openalex.org/I2801491316 |
| authorships[5].institutions[0].ror | https://ror.org/00hx1yw75 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I2801491316 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Government of Uttar Pradesh |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Digvijay Pandey |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Technical Education (Government of Uttar Pradesh), Kanpur, Uttar Pradesh, India. |
| authorships[6].author.id | https://openalex.org/A5030237446 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3207-1829 |
| authorships[6].author.display_name | Mesfin Esayas Lelisho |
| authorships[6].countries | ET |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I267325792 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Statistics, College of Natural and Computational Science, Mizan-Tepi University, Tepi, Ethiopia. [email protected]. |
| authorships[6].institutions[0].id | https://openalex.org/I267325792 |
| authorships[6].institutions[0].ror | https://ror.org/03bs4te22 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I267325792 |
| authorships[6].institutions[0].country_code | ET |
| authorships[6].institutions[0].display_name | Mizan Tepi University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Mesfin Esayas Lelisho |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Statistics, College of Natural and Computational Science, Mizan-Tepi University, Tepi, Ethiopia. [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-99683-5.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Blockchain based electronic educational document management with role-based access control using machine learning model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10270 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Blockchain Technology Applications and Security |
| related_works | https://openalex.org/W4210406818, https://openalex.org/W4306779889, https://openalex.org/W3048554917, https://openalex.org/W3211706803, https://openalex.org/W4382775358, https://openalex.org/W4246942721, https://openalex.org/W3209862047, https://openalex.org/W2186398450, https://openalex.org/W2369414339, https://openalex.org/W1577059718 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-99683-5 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-99683-5.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-99683-5 |
| primary_location.id | doi:10.1038/s41598-025-99683-5 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-99683-5.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-99683-5 |
| publication_date | 2025-05-29 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4285139925, https://openalex.org/W4214821456, https://openalex.org/W4390643562, https://openalex.org/W4309198790, https://openalex.org/W4387613723, https://openalex.org/W4224937953, https://openalex.org/W4400660594, https://openalex.org/W4388570732, https://openalex.org/W4280589899, https://openalex.org/W4205458993, https://openalex.org/W4380049680, https://openalex.org/W4224304847, https://openalex.org/W4401985036, https://openalex.org/W4377232593, https://openalex.org/W3037727385, https://openalex.org/W4396783485, https://openalex.org/W4397019604, https://openalex.org/W4393191773, https://openalex.org/W4320004386, https://openalex.org/W4403139669, https://openalex.org/W4398183308, https://openalex.org/W4391262065, https://openalex.org/W4399248247, https://openalex.org/W4403583637, https://openalex.org/W4404126910, https://openalex.org/W4405653627, https://openalex.org/W4402667478, https://openalex.org/W4406829679, https://openalex.org/W4292258979, https://openalex.org/W3214246038, https://openalex.org/W4390334962, https://openalex.org/W4391359414, https://openalex.org/W4313296012, https://openalex.org/W4390828155, https://openalex.org/W4389545494, https://openalex.org/W4400369660, https://openalex.org/W4206903137, https://openalex.org/W4404856766, https://openalex.org/W4393442362, https://openalex.org/W4399130389, https://openalex.org/W4285187930, https://openalex.org/W4239502242, https://openalex.org/W4307746913, https://openalex.org/W4405054582, https://openalex.org/W4406017330, https://openalex.org/W4408031930, https://openalex.org/W4408378440, https://openalex.org/W4407408273, https://openalex.org/W4406330614, https://openalex.org/W4407274511, https://openalex.org/W4406937093 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 9, 79, 87, 166, 194, 199, 213, 226, 230, 235 |
| abstract_inverted_index.F1 | 208 |
| abstract_inverted_index.In | 129 |
| abstract_inverted_index.an | 207 |
| abstract_inverted_index.as | 155 |
| abstract_inverted_index.in | 12, 64, 109, 157 |
| abstract_inverted_index.is | 102, 119, 163 |
| abstract_inverted_index.of | 3, 15, 55, 197, 204, 210, 215, 228, 232, 237 |
| abstract_inverted_index.on | 106, 121, 141, 165, 186, 219 |
| abstract_inverted_index.to | 8, 77, 131 |
| abstract_inverted_index.NLP | 107 |
| abstract_inverted_index.Our | 74 |
| abstract_inverted_index.QoS | 227 |
| abstract_inverted_index.The | 1, 147, 160 |
| abstract_inverted_index.and | 20, 25, 39, 42, 52, 71, 144, 183, 206, 234 |
| abstract_inverted_index.for | 22 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.led | 7 |
| abstract_inverted_index.out | 104 |
| abstract_inverted_index.the | 13, 46, 56, 65, 100, 142, 190, 223 |
| abstract_inverted_index.two | 54 |
| abstract_inverted_index.(ML) | 51 |
| abstract_inverted_index.94%, | 233 |
| abstract_inverted_index.95%, | 205 |
| abstract_inverted_index.96%. | 216, 238 |
| abstract_inverted_index.97%, | 211, 229 |
| abstract_inverted_index.98%, | 198 |
| abstract_inverted_index.Mean | 174 |
| abstract_inverted_index.QoS, | 179 |
| abstract_inverted_index.This | 114 |
| abstract_inverted_index.aims | 76 |
| abstract_inverted_index.data | 33 |
| abstract_inverted_index.have | 60 |
| abstract_inverted_index.logs | 138 |
| abstract_inverted_index.mean | 200 |
| abstract_inverted_index.most | 57 |
| abstract_inverted_index.that | 95, 150 |
| abstract_inverted_index.this | 135, 151 |
| abstract_inverted_index.user | 168 |
| abstract_inverted_index.with | 68, 124, 212 |
| abstract_inverted_index.word | 111 |
| abstract_inverted_index.(MAP) | 203 |
| abstract_inverted_index.Based | 185 |
| abstract_inverted_index.Here, | 99 |
| abstract_inverted_index.based | 105, 120, 164, 218 |
| abstract_inverted_index.case. | 159 |
| abstract_inverted_index.every | 158 |
| abstract_inverted_index.fuzzy | 89 |
| abstract_inverted_index.novel | 80 |
| abstract_inverted_index.order | 130 |
| abstract_inverted_index.other | 43 |
| abstract_inverted_index.score | 209 |
| abstract_inverted_index.study | 75 |
| abstract_inverted_index.swarm | 127 |
| abstract_inverted_index.time, | 182 |
| abstract_inverted_index.using | 86 |
| abstract_inverted_index.ways. | 73 |
| abstract_inverted_index.access | 117, 123, 139 |
| abstract_inverted_index.highly | 69 |
| abstract_inverted_index.neural | 93 |
| abstract_inverted_index.plague | 45 |
| abstract_inverted_index.record | 28, 30 |
| abstract_inverted_index.remora | 126 |
| abstract_inverted_index.sector | 67 |
| abstract_inverted_index.system | 137 |
| abstract_inverted_index.users, | 134 |
| abstract_inverted_index.users. | 98, 146 |
| abstract_inverted_index.weight | 112 |
| abstract_inverted_index.Machine | 49 |
| abstract_inverted_index.average | 175, 201 |
| abstract_inverted_index.carried | 103 |
| abstract_inverted_index.control | 40, 118 |
| abstract_inverted_index.dataset | 170, 187 |
| abstract_inverted_index.detects | 96 |
| abstract_inverted_index.digital | 4 |
| abstract_inverted_index.feature | 188 |
| abstract_inverted_index.latency | 214 |
| abstract_inverted_index.misuse, | 31 |
| abstract_inverted_index.network | 94 |
| abstract_inverted_index.propose | 78 |
| abstract_inverted_index.sector. | 48 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Academic | 27 |
| abstract_inverted_index.Contract | 180 |
| abstract_inverted_index.Latency, | 178 |
| abstract_inverted_index.accuracy | 196 |
| abstract_inverted_index.achieved | 193 |
| abstract_inverted_index.analysis | 108, 162 |
| abstract_inverted_index.attained | 225 |
| abstract_inverted_index.document | 83, 110, 115 |
| abstract_inverted_index.findings | 148 |
| abstract_inverted_index.forgery, | 29 |
| abstract_inverted_index.identify | 132 |
| abstract_inverted_index.increase | 11 |
| abstract_inverted_index.intended | 156 |
| abstract_inverted_index.learning | 50 |
| abstract_inverted_index.methods, | 59 |
| abstract_inverted_index.performs | 154 |
| abstract_inverted_index.problems | 44 |
| abstract_inverted_index.proposed | 191 |
| abstract_inverted_index.replaced | 61 |
| abstract_inverted_index.requests | 140 |
| abstract_inverted_index.security | 221 |
| abstract_inverted_index.storage, | 18 |
| abstract_inverted_index.temporal | 92 |
| abstract_inverted_index.training | 101 |
| abstract_inverted_index.accuracy, | 173 |
| abstract_inverted_index.analysis, | 189, 222 |
| abstract_inverted_index.detection | 169 |
| abstract_inverted_index.education | 47, 66 |
| abstract_inverted_index.efficient | 72 |
| abstract_inverted_index.emergence | 2 |
| abstract_inverted_index.exchange, | 19 |
| abstract_inverted_index.execution | 181 |
| abstract_inverted_index.indexing. | 113 |
| abstract_inverted_index.malicious | 97, 133, 167 |
| abstract_inverted_index.ownership | 38 |
| abstract_inverted_index.precision | 202, 231 |
| abstract_inverted_index.regarding | 171 |
| abstract_inverted_index.simulated | 125 |
| abstract_inverted_index.suggested | 136, 152 |
| abstract_inverted_index.technique | 85 |
| abstract_inverted_index.F-measure, | 177 |
| abstract_inverted_index.Prediction | 172 |
| abstract_inverted_index.blockchain | 143, 220 |
| abstract_inverted_index.credential | 17, 32 |
| abstract_inverted_index.disruptive | 58 |
| abstract_inverted_index.electronic | 81 |
| abstract_inverted_index.importance | 14 |
| abstract_inverted_index.management | 84, 116 |
| abstract_inverted_index.precision, | 176 |
| abstract_inverted_index.prediction | 195 |
| abstract_inverted_index.role-based | 122 |
| abstract_inverted_index.tampering, | 34 |
| abstract_inverted_index.techniques | 63 |
| abstract_inverted_index.technology | 5 |
| abstract_inverted_index.throughput | 236 |
| abstract_inverted_index.Throughput. | 184 |
| abstract_inverted_index.blockchain, | 53 |
| abstract_inverted_index.demonstrate | 149 |
| abstract_inverted_index.educational | 16, 82 |
| abstract_inverted_index.procedures, | 37 |
| abstract_inverted_index.significant | 10 |
| abstract_inverted_index.traditional | 62 |
| abstract_inverted_index.B-FCTNN_SRSO | 192, 224 |
| abstract_inverted_index.architecture | 153 |
| abstract_inverted_index.enterprises, | 24 |
| abstract_inverted_index.experimental | 161 |
| abstract_inverted_index.feed-forward | 90 |
| abstract_inverted_index.verification | 21, 36 |
| abstract_inverted_index.Additionally, | 217 |
| abstract_inverted_index.authenticated | 145 |
| abstract_inverted_index.convolutional | 91 |
| abstract_inverted_index.difficulties, | 41 |
| abstract_inverted_index.optimisation. | 128 |
| abstract_inverted_index.technological | 70 |
| abstract_inverted_index.universities. | 26 |
| abstract_inverted_index.organisations, | 23 |
| abstract_inverted_index.time-consuming | 35 |
| abstract_inverted_index.blockchain-based | 88 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.98670393 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |