Blockchain-Integrated Federated Learning Framework for Detecting False Data Injection Attacks in Power Systems With Homomorphic Encryption Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/oajpe.2025.3631069
False Data Injection Attacks (FDIAs) pose a substantial risk to the reliability and stability of Cyber-Physical Power Systems (CPPS). While federated learning (FL) has emerged as a promising approach to detect such attacks without exposing sensitive data, security concerns remain in FL, including untrusted central aggregators and potential malicious client updates. This research integrate a private Ethereum blockchain layer and homomorphic encryption into a secure FL framework for FDIA detection to verify model updates and authenticate participating nodes. We design smart contracts to immutably log model update hashes and enforce client authentication, enhancing traceability and tamper-resistance. A prototype implementation uses Ethereum smart contracts for model update verification and client identity management. We simulate the blockchain-integrated FL on a cyber-physical power system dataset using three detection models – XGBoost, LSTM, and a Transformer – and analyze the blockchain-induced latency and communication overhead under a specific network configuration. Results show that the blockchain layer has negligible impact on detection accuracy (global AUC across models) while introducing a moderate training time overhead ( increase in training duration due to block confirmation delays). The proposed research demonstrates a viable approach to blockchain-aided federated learning for critical infrastructure security, combining data privacy, model integrity, and participant trust in a unified framework.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/oajpe.2025.3631069
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4416756164
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416756164Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/oajpe.2025.3631069Digital Object Identifier
- Title
-
Blockchain-Integrated Federated Learning Framework for Detecting False Data Injection Attacks in Power Systems With Homomorphic EncryptionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Firdous Kausar, Sajid Hussain, Karl Walker, Ayesha ImamList of authors in order
- Landing page
-
https://doi.org/10.1109/oajpe.2025.3631069Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/oajpe.2025.3631069Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416756164 |
|---|---|
| doi | https://doi.org/10.1109/oajpe.2025.3631069 |
| ids.doi | https://doi.org/10.1109/oajpe.2025.3631069 |
| ids.openalex | https://openalex.org/W4416756164 |
| fwci | |
| type | article |
| title | Blockchain-Integrated Federated Learning Framework for Detecting False Data Injection Attacks in Power Systems With Homomorphic Encryption |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 832 |
| biblio.first_page | 819 |
| is_xpac | False |
| apc_list.value | 1350 |
| apc_list.currency | USD |
| apc_list.value_usd | 1350 |
| apc_paid.value | 1350 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1350 |
| language | en |
| locations[0].id | doi:10.1109/oajpe.2025.3631069 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210177381 |
| locations[0].source.issn | 2687-7910 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2687-7910 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Open Access Journal of Power and Energy |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Open Access Journal of Power and Energy |
| locations[0].landing_page_url | https://doi.org/10.1109/oajpe.2025.3631069 |
| locations[1].id | pmh:oai:doaj.org/article:2a00ea71b1874b1ca91f4a74933c398b |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Open Access Journal of Power and Energy, Vol 12, Pp 819-832 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/2a00ea71b1874b1ca91f4a74933c398b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5082200006 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8922-549X |
| authorships[0].author.display_name | Firdous Kausar |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I118073183 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN, USA |
| authorships[0].institutions[0].id | https://openalex.org/I118073183 |
| authorships[0].institutions[0].ror | https://ror.org/00k63dq23 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I118073183 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Meharry Medical College |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Firdous Kausar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN, USA |
| authorships[1].author.id | https://openalex.org/A5102009927 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2972-7049 |
| authorships[1].author.display_name | Sajid Hussain |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I118073183 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN, USA |
| authorships[1].institutions[0].id | https://openalex.org/I118073183 |
| authorships[1].institutions[0].ror | https://ror.org/00k63dq23 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I118073183 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Meharry Medical College |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sajid Hussain |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN, USA |
| authorships[2].author.id | https://openalex.org/A5042171231 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Karl Walker |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I9254433 |
| authorships[2].affiliations[0].raw_affiliation_string | Mathematics and Computer Science Department, Fisk University, Nashville, TN, USA |
| authorships[2].institutions[0].id | https://openalex.org/I9254433 |
| authorships[2].institutions[0].ror | https://ror.org/01bbs6821 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9254433 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Fisk University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Karl Walker |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Mathematics and Computer Science Department, Fisk University, Nashville, TN, USA |
| authorships[3].author.id | https://openalex.org/A5120523338 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ayesha Imam |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9254433 |
| authorships[3].affiliations[0].raw_affiliation_string | Mathematics and Computer Science Department, Fisk University, Nashville, TN, USA |
| authorships[3].institutions[0].id | https://openalex.org/I9254433 |
| authorships[3].institutions[0].ror | https://ror.org/01bbs6821 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9254433 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Fisk University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ayesha Imam |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Mathematics and Computer Science Department, Fisk University, Nashville, TN, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/oajpe.2025.3631069 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-10T00:00:00 |
| display_name | Blockchain-Integrated Federated Learning Framework for Detecting False Data Injection Attacks in Power Systems With Homomorphic Encryption |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-01T00:07:19.613710 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/oajpe.2025.3631069 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210177381 |
| best_oa_location.source.issn | 2687-7910 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2687-7910 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Open Access Journal of Power and Energy |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Open Access Journal of Power and Energy |
| best_oa_location.landing_page_url | https://doi.org/10.1109/oajpe.2025.3631069 |
| primary_location.id | doi:10.1109/oajpe.2025.3631069 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210177381 |
| primary_location.source.issn | 2687-7910 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2687-7910 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Open Access Journal of Power and Energy |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Open Access Journal of Power and Energy |
| primary_location.landing_page_url | https://doi.org/10.1109/oajpe.2025.3631069 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 96 |
| abstract_inverted_index.a | 6, 26, 54, 63, 117, 130, 142, 171, 195, 215 |
| abstract_inverted_index.FL | 65, 115 |
| abstract_inverted_index.We | 78, 111 |
| abstract_inverted_index.as | 25 |
| abstract_inverted_index.in | 40, 183, 214 |
| abstract_inverted_index.of | 14 |
| abstract_inverted_index.on | 116, 155 |
| abstract_inverted_index.to | 9, 29, 70, 82, 187, 198 |
| abstract_inverted_index.13- | 179 |
| abstract_inverted_index.AUC | 159 |
| abstract_inverted_index.FL, | 41 |
| abstract_inverted_index.The | 191 |
| abstract_inverted_index.and | 12, 46, 59, 74, 88, 94, 107, 129, 133, 138, 211 |
| abstract_inverted_index.due | 186 |
| abstract_inverted_index.for | 67, 103, 202 |
| abstract_inverted_index.has | 23, 152 |
| abstract_inverted_index.log | 84 |
| abstract_inverted_index.the | 10, 113, 135, 149 |
| abstract_inverted_index.(FL) | 22 |
| abstract_inverted_index.0.94 | 163 |
| abstract_inverted_index.Data | 1 |
| abstract_inverted_index.FDIA | 68 |
| abstract_inverted_index.This | 51 |
| abstract_inverted_index.data | 207 |
| abstract_inverted_index.into | 62 |
| abstract_inverted_index.pose | 5 |
| abstract_inverted_index.risk | 8 |
| abstract_inverted_index.show | 147 |
| abstract_inverted_index.such | 31 |
| abstract_inverted_index.that | 148 |
| abstract_inverted_index.time | 174 |
| abstract_inverted_index.uses | 99 |
| abstract_inverted_index.False | 0 |
| abstract_inverted_index.LSTM, | 128 |
| abstract_inverted_index.Power | 16 |
| abstract_inverted_index.While | 19 |
| abstract_inverted_index.\text | 164 |
| abstract_inverted_index.block | 188 |
| abstract_inverted_index.data, | 36 |
| abstract_inverted_index.layer | 58, 151 |
| abstract_inverted_index.model | 72, 85, 104, 209 |
| abstract_inverted_index.power | 119 |
| abstract_inverted_index.smart | 80, 101 |
| abstract_inverted_index.three | 123 |
| abstract_inverted_index.trust | 213 |
| abstract_inverted_index.under | 141 |
| abstract_inverted_index.using | 122 |
| abstract_inverted_index.while | 169 |
| abstract_inverted_index.-40\%$ | 180 |
| abstract_inverted_index.across | 167 |
| abstract_inverted_index.client | 49, 90, 108 |
| abstract_inverted_index.design | 79 |
| abstract_inverted_index.detect | 30 |
| abstract_inverted_index.hashes | 87 |
| abstract_inverted_index.impact | 154 |
| abstract_inverted_index.models | 125 |
| abstract_inverted_index.nodes. | 77 |
| abstract_inverted_index.remain | 39 |
| abstract_inverted_index.secure | 64 |
| abstract_inverted_index.system | 120 |
| abstract_inverted_index.update | 86, 105 |
| abstract_inverted_index.verify | 71 |
| abstract_inverted_index.viable | 196 |
| abstract_inverted_index.(CPPS). | 18 |
| abstract_inverted_index.(FDIAs) | 4 |
| abstract_inverted_index.(global | 158 |
| abstract_inverted_index.Attacks | 3 |
| abstract_inverted_index.Results | 146 |
| abstract_inverted_index.Systems | 17 |
| abstract_inverted_index.analyze | 134 |
| abstract_inverted_index.attacks | 32 |
| abstract_inverted_index.central | 44 |
| abstract_inverted_index.dataset | 121 |
| abstract_inverted_index.emerged | 24 |
| abstract_inverted_index.enforce | 89 |
| abstract_inverted_index.latency | 137 |
| abstract_inverted_index.models) | 168 |
| abstract_inverted_index.network | 144 |
| abstract_inverted_index.private | 55 |
| abstract_inverted_index.unified | 216 |
| abstract_inverted_index.updates | 73 |
| abstract_inverted_index.without | 33 |
| abstract_inverted_index.– | 126, 132 |
| abstract_inverted_index.Ethereum | 56, 100 |
| abstract_inverted_index.XGBoost, | 127 |
| abstract_inverted_index.accuracy | 157 |
| abstract_inverted_index.approach | 28, 197 |
| abstract_inverted_index.concerns | 38 |
| abstract_inverted_index.critical | 203 |
| abstract_inverted_index.delays). | 190 |
| abstract_inverted_index.duration | 185 |
| abstract_inverted_index.exposing | 34 |
| abstract_inverted_index.identity | 109 |
| abstract_inverted_index.increase | 182 |
| abstract_inverted_index.learning | 21, 201 |
| abstract_inverted_index.moderate | 172 |
| abstract_inverted_index.overhead | 140, 175 |
| abstract_inverted_index.privacy, | 208 |
| abstract_inverted_index.proposed | 192 |
| abstract_inverted_index.research | 52, 193 |
| abstract_inverted_index.security | 37 |
| abstract_inverted_index.simulate | 112 |
| abstract_inverted_index.specific | 143 |
| abstract_inverted_index.training | 173, 184 |
| abstract_inverted_index.updates. | 50 |
| abstract_inverted_index.{-}0.96$ | 165 |
| abstract_inverted_index.<tex-math | 161, 177 |
| abstract_inverted_index.Injection | 2 |
| abstract_inverted_index.combining | 206 |
| abstract_inverted_index.contracts | 81, 102 |
| abstract_inverted_index.detection | 69, 124, 156 |
| abstract_inverted_index.enhancing | 92 |
| abstract_inverted_index.federated | 20, 200 |
| abstract_inverted_index.framework | 66 |
| abstract_inverted_index.immutably | 83 |
| abstract_inverted_index.including | 42 |
| abstract_inverted_index.integrate | 53 |
| abstract_inverted_index.malicious | 48 |
| abstract_inverted_index.potential | 47 |
| abstract_inverted_index.promising | 27 |
| abstract_inverted_index.prototype | 97 |
| abstract_inverted_index.security, | 205 |
| abstract_inverted_index.sensitive | 35 |
| abstract_inverted_index.stability | 13 |
| abstract_inverted_index.untrusted | 43 |
| abstract_inverted_index.blockchain | 57, 150 |
| abstract_inverted_index.encryption | 61 |
| abstract_inverted_index.framework. | 217 |
| abstract_inverted_index.integrity, | 210 |
| abstract_inverted_index.negligible | 153 |
| abstract_inverted_index.Transformer | 131 |
| abstract_inverted_index.aggregators | 45 |
| abstract_inverted_index.homomorphic | 60 |
| abstract_inverted_index.introducing | 170 |
| abstract_inverted_index.management. | 110 |
| abstract_inverted_index.participant | 212 |
| abstract_inverted_index.reliability | 11 |
| abstract_inverted_index.substantial | 7 |
| abstract_inverted_index.authenticate | 75 |
| abstract_inverted_index.confirmation | 189 |
| abstract_inverted_index.demonstrates | 194 |
| abstract_inverted_index.traceability | 93 |
| abstract_inverted_index.verification | 106 |
| abstract_inverted_index.communication | 139 |
| abstract_inverted_index.participating | 76 |
| abstract_inverted_index.Cyber-Physical | 15 |
| abstract_inverted_index.configuration. | 145 |
| abstract_inverted_index.cyber-physical | 118 |
| abstract_inverted_index.implementation | 98 |
| abstract_inverted_index.infrastructure | 204 |
| abstract_inverted_index.authentication, | 91 |
| abstract_inverted_index.<inline-formula> | 160 |
| abstract_inverted_index.blockchain-aided | 199 |
| abstract_inverted_index.(<inline-formula> | 176 |
| abstract_inverted_index.blockchain-induced | 136 |
| abstract_inverted_index.tamper-resistance. | 95 |
| abstract_inverted_index.blockchain-integrated | 114 |
| abstract_inverted_index.notation="LaTeX">$\sim | 162, 178 |
| abstract_inverted_index.</tex-math></inline-formula> | 166, 181 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |