Boosting Adversarial Transferability via Ensemble Non-Attention Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.08937
Ensemble attacks integrate the outputs of surrogate models with diverse architectures, which can be combined with various gradient-based attacks to improve adversarial transferability. However, previous work shows unsatisfactory attack performance when transferring across heterogeneous model architectures. The main reason is that the gradient update directions of heterogeneous surrogate models differ widely, making it hard to reduce the gradient variance of ensemble models while making the best of individual model. To tackle this challenge, we design a novel ensemble attack, NAMEA, which for the first time integrates the gradients from the non-attention areas of ensemble models into the iterative gradient optimization process. Our design is inspired by the observation that the attention areas of heterogeneous models vary sharply, thus the non-attention areas of ViTs are likely to be the focus of CNNs and vice versa. Therefore, we merge the gradients respectively from the attention and non-attention areas of ensemble models so as to fuse the transfer information of CNNs and ViTs. Specifically, we pioneer a new way of decoupling the gradients of non-attention areas from those of attention areas, while merging gradients by meta-learning. Empirical evaluations on ImageNet dataset indicate that NAMEA outperforms AdaEA and SMER, the state-of-the-art ensemble attacks by an average of 15.0% and 9.6%, respectively. This work is the first attempt to explore the power of ensemble non-attention in boosting cross-architecture transferability, providing new insights into launching ensemble attacks.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.08937
- https://arxiv.org/pdf/2511.08937
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416237359
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416237359Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.08937Digital Object Identifier
- Title
-
Boosting Adversarial Transferability via Ensemble Non-AttentionWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-12Full publication date if available
- Authors
-
Yuan Zou, Qin Liu, Jie Wu, Guanrong ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.08937Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.08937Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.08937Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416237359 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.08937 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.08937 |
| ids.openalex | https://openalex.org/W4416237359 |
| fwci | |
| type | preprint |
| title | Boosting Adversarial Transferability via Ensemble Non-Attention |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.08937 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.08937 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.08937 |
| locations[1].id | doi:10.48550/arxiv.2511.08937 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.08937 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101738669 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3692-7479 |
| authorships[0].author.display_name | Yuan Zou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zou, Yipeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100432504 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0203-4514 |
| authorships[1].author.display_name | Qin Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Qin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100600528 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3472-1717 |
| authorships[2].author.display_name | Jie Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wu, Jie |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024633466 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1381-7418 |
| authorships[3].author.display_name | Guanrong Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Guo |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.08937 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-14T00:00:00 |
| display_name | Boosting Adversarial Transferability via Ensemble Non-Attention |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T08:54:24.421849 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.08937 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.08937 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.08937 |
| primary_location.id | pmh:oai:arXiv.org:2511.08937 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.08937 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.08937 |
| publication_date | 2025-11-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 75, 163 |
| abstract_inverted_index.To | 69 |
| abstract_inverted_index.an | 200 |
| abstract_inverted_index.as | 150 |
| abstract_inverted_index.be | 13, 126 |
| abstract_inverted_index.by | 105, 181, 199 |
| abstract_inverted_index.in | 220 |
| abstract_inverted_index.is | 39, 103, 209 |
| abstract_inverted_index.it | 52 |
| abstract_inverted_index.of | 5, 45, 59, 66, 92, 112, 121, 129, 146, 156, 166, 170, 175, 202, 217 |
| abstract_inverted_index.on | 185 |
| abstract_inverted_index.so | 149 |
| abstract_inverted_index.to | 19, 54, 125, 151, 213 |
| abstract_inverted_index.we | 73, 135, 161 |
| abstract_inverted_index.Our | 101 |
| abstract_inverted_index.The | 36 |
| abstract_inverted_index.and | 131, 143, 158, 193, 204 |
| abstract_inverted_index.are | 123 |
| abstract_inverted_index.can | 12 |
| abstract_inverted_index.for | 81 |
| abstract_inverted_index.new | 164, 225 |
| abstract_inverted_index.the | 3, 41, 56, 64, 82, 86, 89, 96, 106, 109, 118, 127, 137, 141, 153, 168, 195, 210, 215 |
| abstract_inverted_index.way | 165 |
| abstract_inverted_index.CNNs | 130, 157 |
| abstract_inverted_index.This | 207 |
| abstract_inverted_index.ViTs | 122 |
| abstract_inverted_index.best | 65 |
| abstract_inverted_index.from | 88, 140, 173 |
| abstract_inverted_index.fuse | 152 |
| abstract_inverted_index.hard | 53 |
| abstract_inverted_index.into | 95, 227 |
| abstract_inverted_index.main | 37 |
| abstract_inverted_index.that | 40, 108, 189 |
| abstract_inverted_index.this | 71 |
| abstract_inverted_index.thus | 117 |
| abstract_inverted_index.time | 84 |
| abstract_inverted_index.vary | 115 |
| abstract_inverted_index.vice | 132 |
| abstract_inverted_index.when | 30 |
| abstract_inverted_index.with | 8, 15 |
| abstract_inverted_index.work | 25, 208 |
| abstract_inverted_index.15.0% | 203 |
| abstract_inverted_index.9.6%, | 205 |
| abstract_inverted_index.AdaEA | 192 |
| abstract_inverted_index.NAMEA | 190 |
| abstract_inverted_index.SMER, | 194 |
| abstract_inverted_index.ViTs. | 159 |
| abstract_inverted_index.areas | 91, 111, 120, 145, 172 |
| abstract_inverted_index.first | 83, 211 |
| abstract_inverted_index.focus | 128 |
| abstract_inverted_index.merge | 136 |
| abstract_inverted_index.model | 34 |
| abstract_inverted_index.novel | 76 |
| abstract_inverted_index.power | 216 |
| abstract_inverted_index.shows | 26 |
| abstract_inverted_index.those | 174 |
| abstract_inverted_index.which | 11, 80 |
| abstract_inverted_index.while | 62, 178 |
| abstract_inverted_index.NAMEA, | 79 |
| abstract_inverted_index.across | 32 |
| abstract_inverted_index.areas, | 177 |
| abstract_inverted_index.attack | 28 |
| abstract_inverted_index.design | 74, 102 |
| abstract_inverted_index.differ | 49 |
| abstract_inverted_index.likely | 124 |
| abstract_inverted_index.making | 51, 63 |
| abstract_inverted_index.model. | 68 |
| abstract_inverted_index.models | 7, 48, 61, 94, 114, 148 |
| abstract_inverted_index.reason | 38 |
| abstract_inverted_index.reduce | 55 |
| abstract_inverted_index.tackle | 70 |
| abstract_inverted_index.update | 43 |
| abstract_inverted_index.versa. | 133 |
| abstract_inverted_index.attack, | 78 |
| abstract_inverted_index.attacks | 1, 18, 198 |
| abstract_inverted_index.attempt | 212 |
| abstract_inverted_index.average | 201 |
| abstract_inverted_index.dataset | 187 |
| abstract_inverted_index.diverse | 9 |
| abstract_inverted_index.explore | 214 |
| abstract_inverted_index.improve | 20 |
| abstract_inverted_index.merging | 179 |
| abstract_inverted_index.outputs | 4 |
| abstract_inverted_index.pioneer | 162 |
| abstract_inverted_index.various | 16 |
| abstract_inverted_index.widely, | 50 |
| abstract_inverted_index.Ensemble | 0 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.ImageNet | 186 |
| abstract_inverted_index.attacks. | 230 |
| abstract_inverted_index.boosting | 221 |
| abstract_inverted_index.combined | 14 |
| abstract_inverted_index.ensemble | 60, 77, 93, 147, 197, 218, 229 |
| abstract_inverted_index.gradient | 42, 57, 98 |
| abstract_inverted_index.indicate | 188 |
| abstract_inverted_index.insights | 226 |
| abstract_inverted_index.inspired | 104 |
| abstract_inverted_index.previous | 24 |
| abstract_inverted_index.process. | 100 |
| abstract_inverted_index.sharply, | 116 |
| abstract_inverted_index.transfer | 154 |
| abstract_inverted_index.variance | 58 |
| abstract_inverted_index.Empirical | 183 |
| abstract_inverted_index.attention | 110, 142, 176 |
| abstract_inverted_index.gradients | 87, 138, 169, 180 |
| abstract_inverted_index.integrate | 2 |
| abstract_inverted_index.iterative | 97 |
| abstract_inverted_index.launching | 228 |
| abstract_inverted_index.providing | 224 |
| abstract_inverted_index.surrogate | 6, 47 |
| abstract_inverted_index.Therefore, | 134 |
| abstract_inverted_index.challenge, | 72 |
| abstract_inverted_index.decoupling | 167 |
| abstract_inverted_index.directions | 44 |
| abstract_inverted_index.individual | 67 |
| abstract_inverted_index.integrates | 85 |
| abstract_inverted_index.adversarial | 21 |
| abstract_inverted_index.evaluations | 184 |
| abstract_inverted_index.information | 155 |
| abstract_inverted_index.observation | 107 |
| abstract_inverted_index.outperforms | 191 |
| abstract_inverted_index.performance | 29 |
| abstract_inverted_index.optimization | 99 |
| abstract_inverted_index.respectively | 139 |
| abstract_inverted_index.transferring | 31 |
| abstract_inverted_index.Specifically, | 160 |
| abstract_inverted_index.heterogeneous | 33, 46, 113 |
| abstract_inverted_index.non-attention | 90, 119, 144, 171, 219 |
| abstract_inverted_index.respectively. | 206 |
| abstract_inverted_index.architectures, | 10 |
| abstract_inverted_index.architectures. | 35 |
| abstract_inverted_index.gradient-based | 17 |
| abstract_inverted_index.meta-learning. | 182 |
| abstract_inverted_index.unsatisfactory | 27 |
| abstract_inverted_index.state-of-the-art | 196 |
| abstract_inverted_index.transferability, | 223 |
| abstract_inverted_index.transferability. | 22 |
| abstract_inverted_index.cross-architecture | 222 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |