Boosting Meta-Training with Base Class Information for Few-Shot Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.03472
Few-shot learning, a challenging task in machine learning, aims to learn a classifier adaptable to recognize new, unseen classes with limited labeled examples. Meta-learning has emerged as a prominent framework for few-shot learning. Its training framework is originally a task-level learning method, such as Model-Agnostic Meta-Learning (MAML) and Prototypical Networks. And a recently proposed training paradigm called Meta-Baseline, which consists of sequential pre-training and meta-training stages, gains state-of-the-art performance. However, as a non-end-to-end training method, indicating the meta-training stage can only begin after the completion of pre-training, Meta-Baseline suffers from higher training cost and suboptimal performance due to the inherent conflicts of the two training stages. To address these limitations, we propose an end-to-end training paradigm consisting of two alternative loops. In the outer loop, we calculate cross entropy loss on the entire training set while updating only the final linear layer. In the inner loop, we employ the original meta-learning training mode to calculate the loss and incorporate gradients from the outer loss to guide the parameter updates. This training paradigm not only converges quickly but also outperforms existing baselines, indicating that information from the overall training set and the meta-learning training paradigm could mutually reinforce one another. Moreover, being model-agnostic, our framework achieves significant performance gains, surpassing the baseline systems by approximate 1%.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.03472
- https://arxiv.org/pdf/2403.03472
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392575728
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392575728Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.03472Digital Object Identifier
- Title
-
Boosting Meta-Training with Base Class Information for Few-Shot LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-06Full publication date if available
- Authors
-
Weihao Jiang, Guodong Liu, Di He, Kun HeList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.03472Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.03472Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.03472Direct OA link when available
- Concepts
-
Boosting (machine learning), Shot (pellet), Computer science, Class (philosophy), Training (meteorology), Artificial intelligence, Base (topology), Machine learning, Training set, One shot, Engineering, Mathematics, Geography, Materials science, Mathematical analysis, Metallurgy, Meteorology, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392575728 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.03472 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.03472 |
| ids.openalex | https://openalex.org/W4392575728 |
| fwci | |
| type | preprint |
| title | Boosting Meta-Training with Base Class Information for Few-Shot Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9825000166893005 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46686674 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9020352363586426 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[0].display_name | Boosting (machine learning) |
| concepts[1].id | https://openalex.org/C2778344882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5841224193572998 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[1].display_name | Shot (pellet) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5783742070198059 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2777212361 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5596877336502075 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[3].display_name | Class (philosophy) |
| concepts[4].id | https://openalex.org/C2777211547 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5218464136123657 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[4].display_name | Training (meteorology) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.49324291944503784 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C42058472 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4929215908050537 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q810214 |
| concepts[6].display_name | Base (topology) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4385001063346863 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C51632099 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41734105348587036 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[8].display_name | Training set |
| concepts[9].id | https://openalex.org/C2992734406 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41093841195106506 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413267 |
| concepts[9].display_name | One shot |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13656923174858093 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09932208061218262 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07916969060897827 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C192562407 |
| concepts[13].level | 0 |
| concepts[13].score | 0.04709446430206299 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[13].display_name | Materials science |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C191897082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[15].display_name | Metallurgy |
| concepts[16].id | https://openalex.org/C153294291 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[16].display_name | Meteorology |
| concepts[17].id | https://openalex.org/C78519656 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[17].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/boosting |
| keywords[0].score | 0.9020352363586426 |
| keywords[0].display_name | Boosting (machine learning) |
| keywords[1].id | https://openalex.org/keywords/shot |
| keywords[1].score | 0.5841224193572998 |
| keywords[1].display_name | Shot (pellet) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5783742070198059 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/class |
| keywords[3].score | 0.5596877336502075 |
| keywords[3].display_name | Class (philosophy) |
| keywords[4].id | https://openalex.org/keywords/training |
| keywords[4].score | 0.5218464136123657 |
| keywords[4].display_name | Training (meteorology) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.49324291944503784 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/base |
| keywords[6].score | 0.4929215908050537 |
| keywords[6].display_name | Base (topology) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4385001063346863 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/training-set |
| keywords[8].score | 0.41734105348587036 |
| keywords[8].display_name | Training set |
| keywords[9].id | https://openalex.org/keywords/one-shot |
| keywords[9].score | 0.41093841195106506 |
| keywords[9].display_name | One shot |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.13656923174858093 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.09932208061218262 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.07916969060897827 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/materials-science |
| keywords[13].score | 0.04709446430206299 |
| keywords[13].display_name | Materials science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.03472 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.03472 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.03472 |
| locations[1].id | doi:10.48550/arxiv.2403.03472 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.03472 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5082728339 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3482-8538 |
| authorships[0].author.display_name | Weihao Jiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiang, Weihao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5005954020 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2230-3769 |
| authorships[1].author.display_name | Guodong Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Guodong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085634514 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0719-8289 |
| authorships[2].author.display_name | Di He |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | He, Di |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100700363 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8943-8671 |
| authorships[3].author.display_name | Kun He |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | He, Kun |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.03472 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Boosting Meta-Training with Base Class Information for Few-Shot Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9825000166893005 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2497720472, https://openalex.org/W4292659306, https://openalex.org/W3044321615, https://openalex.org/W4294892107, https://openalex.org/W2806221744, https://openalex.org/W2326937258, https://openalex.org/W394267150, https://openalex.org/W2773965352, https://openalex.org/W2357748469, https://openalex.org/W2392917037 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.03472 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.03472 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.03472 |
| primary_location.id | pmh:oai:arXiv.org:2403.03472 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.03472 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.03472 |
| publication_date | 2024-03-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 11, 27, 38, 51, 71 |
| abstract_inverted_index.In | 121, 142 |
| abstract_inverted_index.To | 106 |
| abstract_inverted_index.an | 112 |
| abstract_inverted_index.as | 26, 43, 70 |
| abstract_inverted_index.by | 212 |
| abstract_inverted_index.in | 5 |
| abstract_inverted_index.is | 36 |
| abstract_inverted_index.of | 60, 85, 101, 117 |
| abstract_inverted_index.on | 130 |
| abstract_inverted_index.to | 9, 14, 97, 153, 164 |
| abstract_inverted_index.we | 110, 125, 146 |
| abstract_inverted_index.1%. | 214 |
| abstract_inverted_index.And | 50 |
| abstract_inverted_index.Its | 33 |
| abstract_inverted_index.and | 47, 63, 93, 157, 189 |
| abstract_inverted_index.but | 176 |
| abstract_inverted_index.can | 79 |
| abstract_inverted_index.due | 96 |
| abstract_inverted_index.for | 30 |
| abstract_inverted_index.has | 24 |
| abstract_inverted_index.not | 172 |
| abstract_inverted_index.one | 197 |
| abstract_inverted_index.our | 202 |
| abstract_inverted_index.set | 134, 188 |
| abstract_inverted_index.the | 76, 83, 98, 102, 122, 131, 138, 143, 148, 155, 161, 166, 185, 190, 209 |
| abstract_inverted_index.two | 103, 118 |
| abstract_inverted_index.This | 169 |
| abstract_inverted_index.aims | 8 |
| abstract_inverted_index.also | 177 |
| abstract_inverted_index.cost | 92 |
| abstract_inverted_index.from | 89, 160, 184 |
| abstract_inverted_index.loss | 129, 156, 163 |
| abstract_inverted_index.mode | 152 |
| abstract_inverted_index.new, | 16 |
| abstract_inverted_index.only | 80, 137, 173 |
| abstract_inverted_index.such | 42 |
| abstract_inverted_index.task | 4 |
| abstract_inverted_index.that | 182 |
| abstract_inverted_index.with | 19 |
| abstract_inverted_index.after | 82 |
| abstract_inverted_index.begin | 81 |
| abstract_inverted_index.being | 200 |
| abstract_inverted_index.could | 194 |
| abstract_inverted_index.cross | 127 |
| abstract_inverted_index.final | 139 |
| abstract_inverted_index.gains | 66 |
| abstract_inverted_index.guide | 165 |
| abstract_inverted_index.inner | 144 |
| abstract_inverted_index.learn | 10 |
| abstract_inverted_index.loop, | 124, 145 |
| abstract_inverted_index.outer | 123, 162 |
| abstract_inverted_index.stage | 78 |
| abstract_inverted_index.these | 108 |
| abstract_inverted_index.which | 58 |
| abstract_inverted_index.while | 135 |
| abstract_inverted_index.(MAML) | 46 |
| abstract_inverted_index.called | 56 |
| abstract_inverted_index.employ | 147 |
| abstract_inverted_index.entire | 132 |
| abstract_inverted_index.gains, | 207 |
| abstract_inverted_index.higher | 90 |
| abstract_inverted_index.layer. | 141 |
| abstract_inverted_index.linear | 140 |
| abstract_inverted_index.loops. | 120 |
| abstract_inverted_index.unseen | 17 |
| abstract_inverted_index.address | 107 |
| abstract_inverted_index.classes | 18 |
| abstract_inverted_index.emerged | 25 |
| abstract_inverted_index.entropy | 128 |
| abstract_inverted_index.labeled | 21 |
| abstract_inverted_index.limited | 20 |
| abstract_inverted_index.machine | 6 |
| abstract_inverted_index.method, | 41, 74 |
| abstract_inverted_index.overall | 186 |
| abstract_inverted_index.propose | 111 |
| abstract_inverted_index.quickly | 175 |
| abstract_inverted_index.stages, | 65 |
| abstract_inverted_index.stages. | 105 |
| abstract_inverted_index.suffers | 88 |
| abstract_inverted_index.systems | 211 |
| abstract_inverted_index.Few-shot | 0 |
| abstract_inverted_index.However, | 69 |
| abstract_inverted_index.achieves | 204 |
| abstract_inverted_index.another. | 198 |
| abstract_inverted_index.baseline | 210 |
| abstract_inverted_index.consists | 59 |
| abstract_inverted_index.existing | 179 |
| abstract_inverted_index.few-shot | 31 |
| abstract_inverted_index.inherent | 99 |
| abstract_inverted_index.learning | 40 |
| abstract_inverted_index.mutually | 195 |
| abstract_inverted_index.original | 149 |
| abstract_inverted_index.paradigm | 55, 115, 171, 193 |
| abstract_inverted_index.proposed | 53 |
| abstract_inverted_index.recently | 52 |
| abstract_inverted_index.training | 34, 54, 73, 91, 104, 114, 133, 151, 170, 187, 192 |
| abstract_inverted_index.updates. | 168 |
| abstract_inverted_index.updating | 136 |
| abstract_inverted_index.Moreover, | 199 |
| abstract_inverted_index.Networks. | 49 |
| abstract_inverted_index.adaptable | 13 |
| abstract_inverted_index.calculate | 126, 154 |
| abstract_inverted_index.conflicts | 100 |
| abstract_inverted_index.converges | 174 |
| abstract_inverted_index.examples. | 22 |
| abstract_inverted_index.framework | 29, 35, 203 |
| abstract_inverted_index.gradients | 159 |
| abstract_inverted_index.learning, | 1, 7 |
| abstract_inverted_index.learning. | 32 |
| abstract_inverted_index.parameter | 167 |
| abstract_inverted_index.prominent | 28 |
| abstract_inverted_index.recognize | 15 |
| abstract_inverted_index.reinforce | 196 |
| abstract_inverted_index.baselines, | 180 |
| abstract_inverted_index.classifier | 12 |
| abstract_inverted_index.completion | 84 |
| abstract_inverted_index.consisting | 116 |
| abstract_inverted_index.end-to-end | 113 |
| abstract_inverted_index.indicating | 75, 181 |
| abstract_inverted_index.originally | 37 |
| abstract_inverted_index.sequential | 61 |
| abstract_inverted_index.suboptimal | 94 |
| abstract_inverted_index.surpassing | 208 |
| abstract_inverted_index.task-level | 39 |
| abstract_inverted_index.alternative | 119 |
| abstract_inverted_index.approximate | 213 |
| abstract_inverted_index.challenging | 3 |
| abstract_inverted_index.incorporate | 158 |
| abstract_inverted_index.information | 183 |
| abstract_inverted_index.outperforms | 178 |
| abstract_inverted_index.performance | 95, 206 |
| abstract_inverted_index.significant | 205 |
| abstract_inverted_index.Prototypical | 48 |
| abstract_inverted_index.limitations, | 109 |
| abstract_inverted_index.performance. | 68 |
| abstract_inverted_index.pre-training | 62 |
| abstract_inverted_index.Meta-Baseline | 87 |
| abstract_inverted_index.Meta-Learning | 45 |
| abstract_inverted_index.Meta-learning | 23 |
| abstract_inverted_index.meta-learning | 150, 191 |
| abstract_inverted_index.meta-training | 64, 77 |
| abstract_inverted_index.pre-training, | 86 |
| abstract_inverted_index.Meta-Baseline, | 57 |
| abstract_inverted_index.Model-Agnostic | 44 |
| abstract_inverted_index.non-end-to-end | 72 |
| abstract_inverted_index.model-agnostic, | 201 |
| abstract_inverted_index.state-of-the-art | 67 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |