Boosting Nyström Method Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2302.11032
The Nyström method is an effective tool to generate low-rank approximations of large matrices, and it is particularly useful for kernel-based learning. To improve the standard Nyström approximation, ensemble Nyström algorithms compute a mixture of Nyström approximations which are generated independently based on column resampling. We propose a new family of algorithms, boosting Nyström, which iteratively generate multiple ``weak'' Nyström approximations (each using a small number of columns) in a sequence adaptively - each approximation aims to compensate for the weaknesses of its predecessor - and then combine them to form one strong approximation. We demonstrate that our boosting Nyström algorithms can yield more efficient and accurate low-rank approximations to kernel matrices. Improvements over the standard and ensemble Nyström methods are illustrated by simulation studies and real-world data analysis.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2302.11032
- https://arxiv.org/pdf/2302.11032
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4321649239
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4321649239Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2302.11032Digital Object Identifier
- Title
-
Boosting Nyström MethodWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-21Full publication date if available
- Authors
-
Keaton Hamm, Zhaoying Lu, Wenbo Ouyang, Hao Helen ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2302.11032Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2302.11032Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2302.11032Direct OA link when available
- Concepts
-
Boosting (machine learning), Resampling, Nyström method, Kernel (algebra), Mathematics, Rank (graph theory), Algorithm, Computer science, Artificial intelligence, Combinatorics, Mathematical analysis, Integral equationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4321649239 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2302.11032 |
| ids.doi | https://doi.org/10.48550/arxiv.2302.11032 |
| ids.openalex | https://openalex.org/W4321649239 |
| fwci | |
| type | preprint |
| title | Boosting Nyström Method |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T12303 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2605 |
| topics[1].subfield.display_name | Computational Mathematics |
| topics[1].display_name | Tensor decomposition and applications |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9937999844551086 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46686674 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8114643096923828 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[0].display_name | Boosting (machine learning) |
| concepts[1].id | https://openalex.org/C150921843 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5794752240180969 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1170431 |
| concepts[1].display_name | Resampling |
| concepts[2].id | https://openalex.org/C48265008 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5672210454940796 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7071295 |
| concepts[2].display_name | Nyström method |
| concepts[3].id | https://openalex.org/C74193536 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5573067665100098 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[3].display_name | Kernel (algebra) |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5107555389404297 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C164226766 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4103466272354126 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[5].display_name | Rank (graph theory) |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.39198926091194153 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3722417652606964 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3368706703186035 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C114614502 |
| concepts[9].level | 1 |
| concepts[9].score | 0.19078969955444336 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[9].display_name | Combinatorics |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07568186521530151 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| concepts[11].id | https://openalex.org/C27016315 |
| concepts[11].level | 2 |
| concepts[11].score | 0.07483604550361633 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q580101 |
| concepts[11].display_name | Integral equation |
| keywords[0].id | https://openalex.org/keywords/boosting |
| keywords[0].score | 0.8114643096923828 |
| keywords[0].display_name | Boosting (machine learning) |
| keywords[1].id | https://openalex.org/keywords/resampling |
| keywords[1].score | 0.5794752240180969 |
| keywords[1].display_name | Resampling |
| keywords[2].id | https://openalex.org/keywords/nyström-method |
| keywords[2].score | 0.5672210454940796 |
| keywords[2].display_name | Nyström method |
| keywords[3].id | https://openalex.org/keywords/kernel |
| keywords[3].score | 0.5573067665100098 |
| keywords[3].display_name | Kernel (algebra) |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.5107555389404297 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/rank |
| keywords[5].score | 0.4103466272354126 |
| keywords[5].display_name | Rank (graph theory) |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.39198926091194153 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.3722417652606964 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3368706703186035 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/combinatorics |
| keywords[9].score | 0.19078969955444336 |
| keywords[9].display_name | Combinatorics |
| keywords[10].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[10].score | 0.07568186521530151 |
| keywords[10].display_name | Mathematical analysis |
| keywords[11].id | https://openalex.org/keywords/integral-equation |
| keywords[11].score | 0.07483604550361633 |
| keywords[11].display_name | Integral equation |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2302.11032 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2302.11032 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2302.11032 |
| locations[1].id | doi:10.48550/arxiv.2302.11032 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2302.11032 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5064380948 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0719-6045 |
| authorships[0].author.display_name | Keaton Hamm |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hamm, Keaton |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5068982174 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-5752-6911 |
| authorships[1].author.display_name | Zhaoying Lu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lu, Zhaoying |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5024431389 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Wenbo Ouyang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ouyang, Wenbo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5080955712 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8873-3329 |
| authorships[3].author.display_name | Hao Helen Zhang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Zhang, Hao Helen |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2302.11032 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Boosting Nyström Method |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W2052515325, https://openalex.org/W2050948537, https://openalex.org/W2125652721, https://openalex.org/W1540371141, https://openalex.org/W2767646790, https://openalex.org/W4231274751, https://openalex.org/W1549363203, https://openalex.org/W2154063878, https://openalex.org/W2556012038, https://openalex.org/W1489772951 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2302.11032 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2302.11032 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2302.11032 |
| primary_location.id | pmh:oai:arXiv.org:2302.11032 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2302.11032 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2302.11032 |
| publication_date | 2023-02-21 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 72, 84 |
| abstract_inverted_index.a | 32, 47, 63, 69 |
| abstract_inverted_index.To | 22 |
| abstract_inverted_index.We | 45, 94 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.by | 122 |
| abstract_inverted_index.in | 68 |
| abstract_inverted_index.is | 3, 16 |
| abstract_inverted_index.it | 15 |
| abstract_inverted_index.of | 11, 34, 50, 66, 81 |
| abstract_inverted_index.on | 42 |
| abstract_inverted_index.to | 7, 76, 89, 109 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 14, 85, 105, 116, 125 |
| abstract_inverted_index.are | 38, 120 |
| abstract_inverted_index.can | 101 |
| abstract_inverted_index.for | 19, 78 |
| abstract_inverted_index.its | 82 |
| abstract_inverted_index.new | 48 |
| abstract_inverted_index.one | 91 |
| abstract_inverted_index.our | 97 |
| abstract_inverted_index.the | 24, 79, 114 |
| abstract_inverted_index.aims | 75 |
| abstract_inverted_index.data | 127 |
| abstract_inverted_index.each | 73 |
| abstract_inverted_index.form | 90 |
| abstract_inverted_index.more | 103 |
| abstract_inverted_index.over | 113 |
| abstract_inverted_index.that | 96 |
| abstract_inverted_index.them | 88 |
| abstract_inverted_index.then | 86 |
| abstract_inverted_index.tool | 6 |
| abstract_inverted_index.(each | 61 |
| abstract_inverted_index.based | 41 |
| abstract_inverted_index.large | 12 |
| abstract_inverted_index.small | 64 |
| abstract_inverted_index.using | 62 |
| abstract_inverted_index.which | 37, 54 |
| abstract_inverted_index.yield | 102 |
| abstract_inverted_index.column | 43 |
| abstract_inverted_index.family | 49 |
| abstract_inverted_index.kernel | 110 |
| abstract_inverted_index.method | 2 |
| abstract_inverted_index.number | 65 |
| abstract_inverted_index.strong | 92 |
| abstract_inverted_index.useful | 18 |
| abstract_inverted_index.combine | 87 |
| abstract_inverted_index.compute | 31 |
| abstract_inverted_index.improve | 23 |
| abstract_inverted_index.methods | 119 |
| abstract_inverted_index.mixture | 33 |
| abstract_inverted_index.propose | 46 |
| abstract_inverted_index.studies | 124 |
| abstract_inverted_index.Nyström | 1, 26, 29, 35, 59, 99, 118 |
| abstract_inverted_index.``weak'' | 58 |
| abstract_inverted_index.accurate | 106 |
| abstract_inverted_index.boosting | 52, 98 |
| abstract_inverted_index.columns) | 67 |
| abstract_inverted_index.ensemble | 28, 117 |
| abstract_inverted_index.generate | 8, 56 |
| abstract_inverted_index.low-rank | 9, 107 |
| abstract_inverted_index.multiple | 57 |
| abstract_inverted_index.sequence | 70 |
| abstract_inverted_index.standard | 25, 115 |
| abstract_inverted_index.Nyström, | 53 |
| abstract_inverted_index.analysis. | 128 |
| abstract_inverted_index.effective | 5 |
| abstract_inverted_index.efficient | 104 |
| abstract_inverted_index.generated | 39 |
| abstract_inverted_index.learning. | 21 |
| abstract_inverted_index.matrices, | 13 |
| abstract_inverted_index.matrices. | 111 |
| abstract_inverted_index.adaptively | 71 |
| abstract_inverted_index.algorithms | 30, 100 |
| abstract_inverted_index.compensate | 77 |
| abstract_inverted_index.real-world | 126 |
| abstract_inverted_index.simulation | 123 |
| abstract_inverted_index.weaknesses | 80 |
| abstract_inverted_index.algorithms, | 51 |
| abstract_inverted_index.demonstrate | 95 |
| abstract_inverted_index.illustrated | 121 |
| abstract_inverted_index.iteratively | 55 |
| abstract_inverted_index.predecessor | 83 |
| abstract_inverted_index.resampling. | 44 |
| abstract_inverted_index.Improvements | 112 |
| abstract_inverted_index.kernel-based | 20 |
| abstract_inverted_index.particularly | 17 |
| abstract_inverted_index.approximation | 74 |
| abstract_inverted_index.independently | 40 |
| abstract_inverted_index.approximation, | 27 |
| abstract_inverted_index.approximation. | 93 |
| abstract_inverted_index.approximations | 10, 36, 60, 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |