BOOSTING SIMULATED ANNEALING WITH FITNESS LANDSCAPE PARAMETERS FOR BETTER OPTIMALITY Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.47839/ijc.14.2.807
Multi Dimensional Knapsack problem is a widely studied NP hard problem requiring extensive processing to achieve optimality. Simulated Annealing (SA) unlike other is capable of providing fast solutions but at the cost of solution quality. This paper focuses on making SA robust in terms of solution quality while assuring faster convergence by incorporating effective fitness landscape parameters. For this it proposes to modify the ‘Acceptance Probability’ function of SA. The fitness landscape evaluation strategies are embedded to Acceptance Probability Function to identify the exploitation and exploration of the search space and analyze the behavior on the performance of SA. The basis of doing so is that SA in the process of reaching optimality ignores the association between the search space and fitness space and focuses only on the comparison of current solution with optimal solution on the basis of temperature settings at that point. The idea is implemented in two different ways i.e. by making use of Fitness Distance Correlation and Auto Correlation functions. The experiments are conducted to evaluate the resulting SA on the range of MKP instances available in the OR library.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.47839/ijc.14.2.807
- https://computingonline.net/computing/article/download/807/739
- OA Status
- diamond
- Cited By
- 2
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2625299387
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2625299387Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.47839/ijc.14.2.807Digital Object Identifier
- Title
-
BOOSTING SIMULATED ANNEALING WITH FITNESS LANDSCAPE PARAMETERS FOR BETTER OPTIMALITYWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-06-30Full publication date if available
- Authors
-
Sunanda Gupta, Sakshi AroraList of authors in order
- Landing page
-
https://doi.org/10.47839/ijc.14.2.807Publisher landing page
- PDF URL
-
https://computingonline.net/computing/article/download/807/739Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://computingonline.net/computing/article/download/807/739Direct OA link when available
- Concepts
-
Knapsack problem, Simulated annealing, Fitness landscape, Mathematical optimization, Computer science, Fitness function, Basis (linear algebra), Fitness approximation, Boosting (machine learning), Quality (philosophy), Range (aeronautics), Convergence (economics), Mathematics, Artificial intelligence, Genetic algorithm, Population, Sociology, Geometry, Demography, Materials science, Epistemology, Philosophy, Economics, Composite material, Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2625299387 |
|---|---|
| doi | https://doi.org/10.47839/ijc.14.2.807 |
| ids.doi | https://doi.org/10.47839/ijc.14.2.807 |
| ids.mag | 2625299387 |
| ids.openalex | https://openalex.org/W2625299387 |
| fwci | 0.31430091 |
| type | article |
| title | BOOSTING SIMULATED ANNEALING WITH FITNESS LANDSCAPE PARAMETERS FOR BETTER OPTIMALITY |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 112 |
| biblio.first_page | 107 |
| topics[0].id | https://openalex.org/T10100 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Metaheuristic Optimization Algorithms Research |
| topics[1].id | https://openalex.org/T12176 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Optimization and Packing Problems |
| topics[2].id | https://openalex.org/T11975 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9922999739646912 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Evolutionary Algorithms and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C113138325 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8529883623123169 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q864457 |
| concepts[0].display_name | Knapsack problem |
| concepts[1].id | https://openalex.org/C126980161 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7424218654632568 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q863783 |
| concepts[1].display_name | Simulated annealing |
| concepts[2].id | https://openalex.org/C91852762 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7409895062446594 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3307742 |
| concepts[2].display_name | Fitness landscape |
| concepts[3].id | https://openalex.org/C126255220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.7239577174186707 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Mathematical optimization |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6412566900253296 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C176066374 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5807226896286011 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q629118 |
| concepts[5].display_name | Fitness function |
| concepts[6].id | https://openalex.org/C12426560 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5520704388618469 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q189569 |
| concepts[6].display_name | Basis (linear algebra) |
| concepts[7].id | https://openalex.org/C148392497 |
| concepts[7].level | 4 |
| concepts[7].score | 0.478304922580719 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q16250539 |
| concepts[7].display_name | Fitness approximation |
| concepts[8].id | https://openalex.org/C46686674 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4643353223800659 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[8].display_name | Boosting (machine learning) |
| concepts[9].id | https://openalex.org/C2779530757 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43944546580314636 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[9].display_name | Quality (philosophy) |
| concepts[10].id | https://openalex.org/C204323151 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4359256625175476 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[10].display_name | Range (aeronautics) |
| concepts[11].id | https://openalex.org/C2777303404 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41422000527381897 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[11].display_name | Convergence (economics) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.31172287464141846 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.25314560532569885 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C8880873 |
| concepts[14].level | 2 |
| concepts[14].score | 0.07954037189483643 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[14].display_name | Genetic algorithm |
| concepts[15].id | https://openalex.org/C2908647359 |
| concepts[15].level | 2 |
| concepts[15].score | 0.06468850374221802 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[15].display_name | Population |
| concepts[16].id | https://openalex.org/C144024400 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[16].display_name | Sociology |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C149923435 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[18].display_name | Demography |
| concepts[19].id | https://openalex.org/C192562407 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[19].display_name | Materials science |
| concepts[20].id | https://openalex.org/C111472728 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[20].display_name | Epistemology |
| concepts[21].id | https://openalex.org/C138885662 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[21].display_name | Philosophy |
| concepts[22].id | https://openalex.org/C162324750 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[22].display_name | Economics |
| concepts[23].id | https://openalex.org/C159985019 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[23].display_name | Composite material |
| concepts[24].id | https://openalex.org/C50522688 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[24].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/knapsack-problem |
| keywords[0].score | 0.8529883623123169 |
| keywords[0].display_name | Knapsack problem |
| keywords[1].id | https://openalex.org/keywords/simulated-annealing |
| keywords[1].score | 0.7424218654632568 |
| keywords[1].display_name | Simulated annealing |
| keywords[2].id | https://openalex.org/keywords/fitness-landscape |
| keywords[2].score | 0.7409895062446594 |
| keywords[2].display_name | Fitness landscape |
| keywords[3].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[3].score | 0.7239577174186707 |
| keywords[3].display_name | Mathematical optimization |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6412566900253296 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/fitness-function |
| keywords[5].score | 0.5807226896286011 |
| keywords[5].display_name | Fitness function |
| keywords[6].id | https://openalex.org/keywords/basis |
| keywords[6].score | 0.5520704388618469 |
| keywords[6].display_name | Basis (linear algebra) |
| keywords[7].id | https://openalex.org/keywords/fitness-approximation |
| keywords[7].score | 0.478304922580719 |
| keywords[7].display_name | Fitness approximation |
| keywords[8].id | https://openalex.org/keywords/boosting |
| keywords[8].score | 0.4643353223800659 |
| keywords[8].display_name | Boosting (machine learning) |
| keywords[9].id | https://openalex.org/keywords/quality |
| keywords[9].score | 0.43944546580314636 |
| keywords[9].display_name | Quality (philosophy) |
| keywords[10].id | https://openalex.org/keywords/range |
| keywords[10].score | 0.4359256625175476 |
| keywords[10].display_name | Range (aeronautics) |
| keywords[11].id | https://openalex.org/keywords/convergence |
| keywords[11].score | 0.41422000527381897 |
| keywords[11].display_name | Convergence (economics) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.31172287464141846 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.25314560532569885 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[14].score | 0.07954037189483643 |
| keywords[14].display_name | Genetic algorithm |
| keywords[15].id | https://openalex.org/keywords/population |
| keywords[15].score | 0.06468850374221802 |
| keywords[15].display_name | Population |
| language | en |
| locations[0].id | doi:10.47839/ijc.14.2.807 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764977685 |
| locations[0].source.issn | 1727-6209, 2312-5381 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1727-6209 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Computing |
| locations[0].source.host_organization | https://openalex.org/P4362643881 |
| locations[0].source.host_organization_name | Research Institute of Intelligent Computer Systems |
| locations[0].source.host_organization_lineage | https://openalex.org/P4362643881 |
| locations[0].source.host_organization_lineage_names | Research Institute of Intelligent Computer Systems |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://computingonline.net/computing/article/download/807/739 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Computing |
| locations[0].landing_page_url | https://doi.org/10.47839/ijc.14.2.807 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5044781519 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5180-244X |
| authorships[0].author.display_name | Sunanda Gupta |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59179055 |
| authorships[0].affiliations[0].raw_affiliation_string | Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir, India |
| authorships[0].institutions[0].id | https://openalex.org/I59179055 |
| authorships[0].institutions[0].ror | https://ror.org/036x6w630 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59179055 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Shri Mata Vaishno Devi University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sunanda Gupta |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir, India |
| authorships[1].author.id | https://openalex.org/A5002581395 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8064-3951 |
| authorships[1].author.display_name | Sakshi Arora |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I59179055 |
| authorships[1].affiliations[0].raw_affiliation_string | Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir, India |
| authorships[1].institutions[0].id | https://openalex.org/I59179055 |
| authorships[1].institutions[0].ror | https://ror.org/036x6w630 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I59179055 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Shri Mata Vaishno Devi University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Sakshi Arora |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://computingonline.net/computing/article/download/807/739 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | BOOSTING SIMULATED ANNEALING WITH FITNESS LANDSCAPE PARAMETERS FOR BETTER OPTIMALITY |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10100 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Metaheuristic Optimization Algorithms Research |
| related_works | https://openalex.org/W2036107212, https://openalex.org/W180447432, https://openalex.org/W1958774675, https://openalex.org/W2625299387, https://openalex.org/W2131579134, https://openalex.org/W4281837671, https://openalex.org/W3167725443, https://openalex.org/W2534945631, https://openalex.org/W1499368655, https://openalex.org/W1752418873 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2018 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.47839/ijc.14.2.807 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764977685 |
| best_oa_location.source.issn | 1727-6209, 2312-5381 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1727-6209 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Computing |
| best_oa_location.source.host_organization | https://openalex.org/P4362643881 |
| best_oa_location.source.host_organization_name | Research Institute of Intelligent Computer Systems |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4362643881 |
| best_oa_location.source.host_organization_lineage_names | Research Institute of Intelligent Computer Systems |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://computingonline.net/computing/article/download/807/739 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Computing |
| best_oa_location.landing_page_url | https://doi.org/10.47839/ijc.14.2.807 |
| primary_location.id | doi:10.47839/ijc.14.2.807 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764977685 |
| primary_location.source.issn | 1727-6209, 2312-5381 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1727-6209 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Computing |
| primary_location.source.host_organization | https://openalex.org/P4362643881 |
| primary_location.source.host_organization_name | Research Institute of Intelligent Computer Systems |
| primary_location.source.host_organization_lineage | https://openalex.org/P4362643881 |
| primary_location.source.host_organization_lineage_names | Research Institute of Intelligent Computer Systems |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://computingonline.net/computing/article/download/807/739 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Computing |
| primary_location.landing_page_url | https://doi.org/10.47839/ijc.14.2.807 |
| publication_date | 2015-06-30 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2024060531, https://openalex.org/W2025045856, https://openalex.org/W2119980860, https://openalex.org/W1586409345, https://openalex.org/W4285719527, https://openalex.org/W2171682893, https://openalex.org/W2049967755, https://openalex.org/W1594945786, https://openalex.org/W2157350782, https://openalex.org/W2066671865, https://openalex.org/W1972070025 |
| referenced_works_count | 11 |
| abstract_inverted_index.a | 5 |
| abstract_inverted_index.NP | 8 |
| abstract_inverted_index.OR | 182 |
| abstract_inverted_index.SA | 40, 106, 172 |
| abstract_inverted_index.at | 29, 141 |
| abstract_inverted_index.by | 51, 153 |
| abstract_inverted_index.in | 42, 107, 148, 180 |
| abstract_inverted_index.is | 4, 22, 104, 146 |
| abstract_inverted_index.it | 59 |
| abstract_inverted_index.of | 24, 32, 44, 67, 86, 97, 101, 110, 129, 138, 156, 176 |
| abstract_inverted_index.on | 38, 94, 126, 135, 173 |
| abstract_inverted_index.so | 103 |
| abstract_inverted_index.to | 14, 61, 76, 80, 168 |
| abstract_inverted_index.For | 57 |
| abstract_inverted_index.MKP | 177 |
| abstract_inverted_index.SA. | 68, 98 |
| abstract_inverted_index.The | 69, 99, 144, 164 |
| abstract_inverted_index.and | 84, 90, 120, 123, 160 |
| abstract_inverted_index.are | 74, 166 |
| abstract_inverted_index.but | 28 |
| abstract_inverted_index.the | 30, 63, 82, 87, 92, 95, 108, 114, 117, 127, 136, 170, 174, 181 |
| abstract_inverted_index.two | 149 |
| abstract_inverted_index.use | 155 |
| abstract_inverted_index.(SA) | 19 |
| abstract_inverted_index.Auto | 161 |
| abstract_inverted_index.This | 35 |
| abstract_inverted_index.cost | 31 |
| abstract_inverted_index.fast | 26 |
| abstract_inverted_index.hard | 9 |
| abstract_inverted_index.i.e. | 152 |
| abstract_inverted_index.idea | 145 |
| abstract_inverted_index.only | 125 |
| abstract_inverted_index.that | 105, 142 |
| abstract_inverted_index.this | 58 |
| abstract_inverted_index.ways | 151 |
| abstract_inverted_index.with | 132 |
| abstract_inverted_index.Multi | 0 |
| abstract_inverted_index.basis | 100, 137 |
| abstract_inverted_index.doing | 102 |
| abstract_inverted_index.other | 21 |
| abstract_inverted_index.paper | 36 |
| abstract_inverted_index.range | 175 |
| abstract_inverted_index.space | 89, 119, 122 |
| abstract_inverted_index.terms | 43 |
| abstract_inverted_index.while | 47 |
| abstract_inverted_index.faster | 49 |
| abstract_inverted_index.making | 39, 154 |
| abstract_inverted_index.modify | 62 |
| abstract_inverted_index.point. | 143 |
| abstract_inverted_index.robust | 41 |
| abstract_inverted_index.search | 88, 118 |
| abstract_inverted_index.unlike | 20 |
| abstract_inverted_index.widely | 6 |
| abstract_inverted_index.Fitness | 157 |
| abstract_inverted_index.achieve | 15 |
| abstract_inverted_index.analyze | 91 |
| abstract_inverted_index.between | 116 |
| abstract_inverted_index.capable | 23 |
| abstract_inverted_index.current | 130 |
| abstract_inverted_index.fitness | 54, 70, 121 |
| abstract_inverted_index.focuses | 37, 124 |
| abstract_inverted_index.ignores | 113 |
| abstract_inverted_index.optimal | 133 |
| abstract_inverted_index.problem | 3, 10 |
| abstract_inverted_index.process | 109 |
| abstract_inverted_index.quality | 46 |
| abstract_inverted_index.studied | 7 |
| abstract_inverted_index.Distance | 158 |
| abstract_inverted_index.Function | 79 |
| abstract_inverted_index.Knapsack | 2 |
| abstract_inverted_index.assuring | 48 |
| abstract_inverted_index.behavior | 93 |
| abstract_inverted_index.embedded | 75 |
| abstract_inverted_index.evaluate | 169 |
| abstract_inverted_index.function | 66 |
| abstract_inverted_index.identify | 81 |
| abstract_inverted_index.library. | 183 |
| abstract_inverted_index.proposes | 60 |
| abstract_inverted_index.quality. | 34 |
| abstract_inverted_index.reaching | 111 |
| abstract_inverted_index.settings | 140 |
| abstract_inverted_index.solution | 33, 45, 131, 134 |
| abstract_inverted_index.Annealing | 18 |
| abstract_inverted_index.Simulated | 17 |
| abstract_inverted_index.available | 179 |
| abstract_inverted_index.conducted | 167 |
| abstract_inverted_index.different | 150 |
| abstract_inverted_index.effective | 53 |
| abstract_inverted_index.extensive | 12 |
| abstract_inverted_index.instances | 178 |
| abstract_inverted_index.landscape | 55, 71 |
| abstract_inverted_index.providing | 25 |
| abstract_inverted_index.requiring | 11 |
| abstract_inverted_index.resulting | 171 |
| abstract_inverted_index.solutions | 27 |
| abstract_inverted_index.Acceptance | 77 |
| abstract_inverted_index.comparison | 128 |
| abstract_inverted_index.evaluation | 72 |
| abstract_inverted_index.functions. | 163 |
| abstract_inverted_index.optimality | 112 |
| abstract_inverted_index.processing | 13 |
| abstract_inverted_index.strategies | 73 |
| abstract_inverted_index.Correlation | 159, 162 |
| abstract_inverted_index.Dimensional | 1 |
| abstract_inverted_index.Probability | 78 |
| abstract_inverted_index.association | 115 |
| abstract_inverted_index.convergence | 50 |
| abstract_inverted_index.experiments | 165 |
| abstract_inverted_index.exploration | 85 |
| abstract_inverted_index.implemented | 147 |
| abstract_inverted_index.optimality. | 16 |
| abstract_inverted_index.parameters. | 56 |
| abstract_inverted_index.performance | 96 |
| abstract_inverted_index.temperature | 139 |
| abstract_inverted_index.exploitation | 83 |
| abstract_inverted_index.incorporating | 52 |
| abstract_inverted_index.‘Acceptance | 64 |
| abstract_inverted_index.Probability’ | 65 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.82770739 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |