Boosting with Tempered Exponential Measures Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.05487
One of the most popular ML algorithms, AdaBoost, can be derived from the dual of a relative entropy minimization problem subject to the fact that the positive weights on the examples sum to one. Essentially, harder examples receive higher probabilities. We generalize this setup to the recently introduced {\it tempered exponential measure}s (TEMs) where normalization is enforced on a specific power of the measure and not the measure itself. TEMs are indexed by a parameter $t$ and generalize exponential families ($t=1$). Our algorithm, $t$-AdaBoost, recovers AdaBoost~as a special case ($t=1$). We show that $t$-AdaBoost retains AdaBoost's celebrated exponential convergence rate when $t\in [0,1)$ while allowing a slight improvement of the rate's hidden constant compared to $t=1$. $t$-AdaBoost partially computes on a generalization of classical arithmetic over the reals and brings notable properties like guaranteed bounded leveraging coefficients for $t\in [0,1)$. From the loss that $t$-AdaBoost minimizes (a generalization of the exponential loss), we show how to derive a new family of {\it tempered} losses for the induction of domain-partitioning classifiers like decision trees. Crucially, strict properness is ensured for all while their boosting rates span the full known spectrum. Experiments using $t$-AdaBoost+trees display that significant leverage can be achieved by tuning $t$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.05487
- https://arxiv.org/pdf/2306.05487
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380352232
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380352232Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.05487Digital Object Identifier
- Title
-
Boosting with Tempered Exponential MeasuresWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-08Full publication date if available
- Authors
-
Richard Nock, Ehsan Amid, Manfred K. WarmuthList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.05487Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.05487Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.05487Direct OA link when available
- Concepts
-
AdaBoost, Boosting (machine learning), Mathematics, Exponential function, Word error rate, Normalization (sociology), Leverage (statistics), Algorithm, Artificial intelligence, Combinatorics, Applied mathematics, Computer science, Pattern recognition (psychology), Statistics, Mathematical analysis, Support vector machine, Sociology, AnthropologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380352232 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.05487 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.05487 |
| ids.openalex | https://openalex.org/W4380352232 |
| fwci | |
| type | preprint |
| title | Boosting with Tempered Exponential Measures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9865999817848206 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| topics[1].id | https://openalex.org/T12026 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9550999999046326 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Explainable Artificial Intelligence (XAI) |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9395999908447266 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C141404830 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9137519598007202 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2823869 |
| concepts[0].display_name | AdaBoost |
| concepts[1].id | https://openalex.org/C46686674 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7864373922348022 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[1].display_name | Boosting (machine learning) |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6581499576568604 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C151376022 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5732790231704712 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q168698 |
| concepts[3].display_name | Exponential function |
| concepts[4].id | https://openalex.org/C40969351 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4611667990684509 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3516228 |
| concepts[4].display_name | Word error rate |
| concepts[5].id | https://openalex.org/C136886441 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43065446615219116 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[5].display_name | Normalization (sociology) |
| concepts[6].id | https://openalex.org/C153083717 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42491039633750916 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[6].display_name | Leverage (statistics) |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.40204381942749023 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.38710325956344604 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C114614502 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3762965202331543 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[9].display_name | Combinatorics |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3663327097892761 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.33845797181129456 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3250201344490051 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.25573116540908813 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1329250931739807 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C12267149 |
| concepts[15].level | 2 |
| concepts[15].score | 0.13081508874893188 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[15].display_name | Support vector machine |
| concepts[16].id | https://openalex.org/C144024400 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[16].display_name | Sociology |
| concepts[17].id | https://openalex.org/C19165224 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[17].display_name | Anthropology |
| keywords[0].id | https://openalex.org/keywords/adaboost |
| keywords[0].score | 0.9137519598007202 |
| keywords[0].display_name | AdaBoost |
| keywords[1].id | https://openalex.org/keywords/boosting |
| keywords[1].score | 0.7864373922348022 |
| keywords[1].display_name | Boosting (machine learning) |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.6581499576568604 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/exponential-function |
| keywords[3].score | 0.5732790231704712 |
| keywords[3].display_name | Exponential function |
| keywords[4].id | https://openalex.org/keywords/word-error-rate |
| keywords[4].score | 0.4611667990684509 |
| keywords[4].display_name | Word error rate |
| keywords[5].id | https://openalex.org/keywords/normalization |
| keywords[5].score | 0.43065446615219116 |
| keywords[5].display_name | Normalization (sociology) |
| keywords[6].id | https://openalex.org/keywords/leverage |
| keywords[6].score | 0.42491039633750916 |
| keywords[6].display_name | Leverage (statistics) |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.40204381942749023 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.38710325956344604 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/combinatorics |
| keywords[9].score | 0.3762965202331543 |
| keywords[9].display_name | Combinatorics |
| keywords[10].id | https://openalex.org/keywords/applied-mathematics |
| keywords[10].score | 0.3663327097892761 |
| keywords[10].display_name | Applied mathematics |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.33845797181129456 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.3250201344490051 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.25573116540908813 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[14].score | 0.1329250931739807 |
| keywords[14].display_name | Mathematical analysis |
| keywords[15].id | https://openalex.org/keywords/support-vector-machine |
| keywords[15].score | 0.13081508874893188 |
| keywords[15].display_name | Support vector machine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.05487 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.05487 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.05487 |
| locations[1].id | doi:10.48550/arxiv.2306.05487 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.05487 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5082414223 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8384-9621 |
| authorships[0].author.display_name | Richard Nock |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nock, Richard |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5056776503 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6097-0226 |
| authorships[1].author.display_name | Ehsan Amid |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Amid, Ehsan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5108549518 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Manfred K. Warmuth |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Warmuth, Manfred K. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.05487 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Boosting with Tempered Exponential Measures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9865999817848206 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| related_works | https://openalex.org/W2327035729, https://openalex.org/W2348748958, https://openalex.org/W3039673966, https://openalex.org/W1538046993, https://openalex.org/W2884325279, https://openalex.org/W1570592793, https://openalex.org/W1525436954, https://openalex.org/W2385662756, https://openalex.org/W2585372724, https://openalex.org/W2241444561 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.05487 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.05487 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.05487 |
| primary_location.id | pmh:oai:arXiv.org:2306.05487 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.05487 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.05487 |
| publication_date | 2023-06-08 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 15, 58, 73, 86, 105, 120, 157 |
| abstract_inverted_index.(a | 146 |
| abstract_inverted_index.ML | 5 |
| abstract_inverted_index.We | 40, 90 |
| abstract_inverted_index.be | 9, 197 |
| abstract_inverted_index.by | 72, 199 |
| abstract_inverted_index.is | 55, 176 |
| abstract_inverted_index.of | 1, 14, 61, 108, 122, 148, 160, 167 |
| abstract_inverted_index.on | 28, 57, 119 |
| abstract_inverted_index.to | 21, 32, 44, 114, 155 |
| abstract_inverted_index.we | 152 |
| abstract_inverted_index.$t$ | 75 |
| abstract_inverted_index.One | 0 |
| abstract_inverted_index.Our | 81 |
| abstract_inverted_index.all | 179 |
| abstract_inverted_index.and | 64, 76, 128 |
| abstract_inverted_index.are | 70 |
| abstract_inverted_index.can | 8, 196 |
| abstract_inverted_index.for | 137, 164, 178 |
| abstract_inverted_index.how | 154 |
| abstract_inverted_index.new | 158 |
| abstract_inverted_index.not | 65 |
| abstract_inverted_index.sum | 31 |
| abstract_inverted_index.the | 2, 12, 22, 25, 29, 45, 62, 66, 109, 126, 141, 149, 165, 185 |
| abstract_inverted_index.$t$. | 201 |
| abstract_inverted_index.From | 140 |
| abstract_inverted_index.TEMs | 69 |
| abstract_inverted_index.case | 88 |
| abstract_inverted_index.dual | 13 |
| abstract_inverted_index.fact | 23 |
| abstract_inverted_index.from | 11 |
| abstract_inverted_index.full | 186 |
| abstract_inverted_index.like | 132, 170 |
| abstract_inverted_index.loss | 142 |
| abstract_inverted_index.most | 3 |
| abstract_inverted_index.one. | 33 |
| abstract_inverted_index.over | 125 |
| abstract_inverted_index.rate | 99 |
| abstract_inverted_index.show | 91, 153 |
| abstract_inverted_index.span | 184 |
| abstract_inverted_index.that | 24, 92, 143, 193 |
| abstract_inverted_index.this | 42 |
| abstract_inverted_index.when | 100 |
| abstract_inverted_index.{\it | 48, 161 |
| abstract_inverted_index.$t\in | 101, 138 |
| abstract_inverted_index.known | 187 |
| abstract_inverted_index.power | 60 |
| abstract_inverted_index.rates | 183 |
| abstract_inverted_index.reals | 127 |
| abstract_inverted_index.setup | 43 |
| abstract_inverted_index.their | 181 |
| abstract_inverted_index.using | 190 |
| abstract_inverted_index.where | 53 |
| abstract_inverted_index.while | 103, 180 |
| abstract_inverted_index.$t=1$. | 115 |
| abstract_inverted_index.(TEMs) | 52 |
| abstract_inverted_index.[0,1)$ | 102 |
| abstract_inverted_index.brings | 129 |
| abstract_inverted_index.derive | 156 |
| abstract_inverted_index.family | 159 |
| abstract_inverted_index.harder | 35 |
| abstract_inverted_index.hidden | 111 |
| abstract_inverted_index.higher | 38 |
| abstract_inverted_index.loss), | 151 |
| abstract_inverted_index.losses | 163 |
| abstract_inverted_index.rate's | 110 |
| abstract_inverted_index.slight | 106 |
| abstract_inverted_index.strict | 174 |
| abstract_inverted_index.trees. | 172 |
| abstract_inverted_index.tuning | 200 |
| abstract_inverted_index.[0,1)$. | 139 |
| abstract_inverted_index.bounded | 134 |
| abstract_inverted_index.derived | 10 |
| abstract_inverted_index.display | 192 |
| abstract_inverted_index.ensured | 177 |
| abstract_inverted_index.entropy | 17 |
| abstract_inverted_index.indexed | 71 |
| abstract_inverted_index.itself. | 68 |
| abstract_inverted_index.measure | 63, 67 |
| abstract_inverted_index.notable | 130 |
| abstract_inverted_index.popular | 4 |
| abstract_inverted_index.problem | 19 |
| abstract_inverted_index.receive | 37 |
| abstract_inverted_index.retains | 94 |
| abstract_inverted_index.special | 87 |
| abstract_inverted_index.subject | 20 |
| abstract_inverted_index.weights | 27 |
| abstract_inverted_index.($t=1$). | 80, 89 |
| abstract_inverted_index.achieved | 198 |
| abstract_inverted_index.allowing | 104 |
| abstract_inverted_index.boosting | 182 |
| abstract_inverted_index.compared | 113 |
| abstract_inverted_index.computes | 118 |
| abstract_inverted_index.constant | 112 |
| abstract_inverted_index.decision | 171 |
| abstract_inverted_index.enforced | 56 |
| abstract_inverted_index.examples | 30, 36 |
| abstract_inverted_index.families | 79 |
| abstract_inverted_index.leverage | 195 |
| abstract_inverted_index.positive | 26 |
| abstract_inverted_index.recently | 46 |
| abstract_inverted_index.recovers | 84 |
| abstract_inverted_index.relative | 16 |
| abstract_inverted_index.specific | 59 |
| abstract_inverted_index.tempered | 49 |
| abstract_inverted_index.AdaBoost, | 7 |
| abstract_inverted_index.classical | 123 |
| abstract_inverted_index.induction | 166 |
| abstract_inverted_index.measure}s | 51 |
| abstract_inverted_index.minimizes | 145 |
| abstract_inverted_index.parameter | 74 |
| abstract_inverted_index.partially | 117 |
| abstract_inverted_index.spectrum. | 188 |
| abstract_inverted_index.tempered} | 162 |
| abstract_inverted_index.AdaBoost's | 95 |
| abstract_inverted_index.Crucially, | 173 |
| abstract_inverted_index.algorithm, | 82 |
| abstract_inverted_index.arithmetic | 124 |
| abstract_inverted_index.celebrated | 96 |
| abstract_inverted_index.generalize | 41, 77 |
| abstract_inverted_index.guaranteed | 133 |
| abstract_inverted_index.introduced | 47 |
| abstract_inverted_index.leveraging | 135 |
| abstract_inverted_index.properness | 175 |
| abstract_inverted_index.properties | 131 |
| abstract_inverted_index.AdaBoost~as | 85 |
| abstract_inverted_index.Experiments | 189 |
| abstract_inverted_index.algorithms, | 6 |
| abstract_inverted_index.classifiers | 169 |
| abstract_inverted_index.convergence | 98 |
| abstract_inverted_index.exponential | 50, 78, 97, 150 |
| abstract_inverted_index.improvement | 107 |
| abstract_inverted_index.significant | 194 |
| abstract_inverted_index.$t$-AdaBoost | 93, 116, 144 |
| abstract_inverted_index.Essentially, | 34 |
| abstract_inverted_index.coefficients | 136 |
| abstract_inverted_index.minimization | 18 |
| abstract_inverted_index.$t$-AdaBoost, | 83 |
| abstract_inverted_index.normalization | 54 |
| abstract_inverted_index.generalization | 121, 147 |
| abstract_inverted_index.probabilities. | 39 |
| abstract_inverted_index.$t$-AdaBoost+trees | 191 |
| abstract_inverted_index.domain-partitioning | 168 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |