BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.05544
Diffusion models have demonstrated excellent potential for generating diverse images. However, their performance often suffers from slow generation due to iterative denoising. Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few without significant quality degradation. However, existing distillation methods either require significant amounts of offline computation for generating synthetic training data from the teacher model or need to perform expensive online learning with the help of real data. In this work, we present a novel technique called BOOT, that overcomes these limitations with an efficient data-free distillation algorithm. The core idea is to learn a time-conditioned model that predicts the output of a pre-trained diffusion model teacher given any time step. Such a model can be efficiently trained based on bootstrapping from two consecutive sampled steps. Furthermore, our method can be easily adapted to large-scale text-to-image diffusion models, which are challenging for conventional methods given the fact that the training sets are often large and difficult to access. We demonstrate the effectiveness of our approach on several benchmark datasets in the DDIM setting, achieving comparable generation quality while being orders of magnitude faster than the diffusion teacher. The text-to-image results show that the proposed approach is able to handle highly complex distributions, shedding light on more efficient generative modeling.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.05544
- https://arxiv.org/pdf/2306.05544
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380352311
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380352311Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.05544Digital Object Identifier
- Title
-
BOOT: Data-free Distillation of Denoising Diffusion Models with BootstrappingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-08Full publication date if available
- Authors
-
Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, Josh SusskindList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.05544Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.05544Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.05544Direct OA link when available
- Concepts
-
Computer science, Benchmark (surveying), Inference, Bootstrapping (finance), Computation, Distillation, Noise reduction, Machine learning, Overhead (engineering), Artificial intelligence, Generative model, Generative grammar, Algorithm, Mathematics, Econometrics, Geodesy, Operating system, Organic chemistry, Chemistry, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380352311 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.05544 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.05544 |
| ids.openalex | https://openalex.org/W4380352311 |
| fwci | |
| type | preprint |
| title | BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11304 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9904999732971191 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7927882671356201 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.657558798789978 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.635679304599762 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C207609745 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5720124840736389 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4944086 |
| concepts[3].display_name | Bootstrapping (finance) |
| concepts[4].id | https://openalex.org/C45374587 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5612558722496033 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[4].display_name | Computation |
| concepts[5].id | https://openalex.org/C204030448 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5468345880508423 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q101017 |
| concepts[5].display_name | Distillation |
| concepts[6].id | https://openalex.org/C163294075 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5063701868057251 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[6].display_name | Noise reduction |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4994497299194336 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C2779960059 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4732257127761841 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7113681 |
| concepts[8].display_name | Overhead (engineering) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.45244520902633667 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C167966045 |
| concepts[10].level | 3 |
| concepts[10].score | 0.42042994499206543 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[10].display_name | Generative model |
| concepts[11].id | https://openalex.org/C39890363 |
| concepts[11].level | 2 |
| concepts[11].score | 0.33989202976226807 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[11].display_name | Generative grammar |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3354948163032532 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.12425222992897034 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C149782125 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[14].display_name | Econometrics |
| concepts[15].id | https://openalex.org/C13280743 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[15].display_name | Geodesy |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C178790620 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[17].display_name | Organic chemistry |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| concepts[19].id | https://openalex.org/C205649164 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[19].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7927882671356201 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.657558798789978 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.635679304599762 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/bootstrapping |
| keywords[3].score | 0.5720124840736389 |
| keywords[3].display_name | Bootstrapping (finance) |
| keywords[4].id | https://openalex.org/keywords/computation |
| keywords[4].score | 0.5612558722496033 |
| keywords[4].display_name | Computation |
| keywords[5].id | https://openalex.org/keywords/distillation |
| keywords[5].score | 0.5468345880508423 |
| keywords[5].display_name | Distillation |
| keywords[6].id | https://openalex.org/keywords/noise-reduction |
| keywords[6].score | 0.5063701868057251 |
| keywords[6].display_name | Noise reduction |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4994497299194336 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/overhead |
| keywords[8].score | 0.4732257127761841 |
| keywords[8].display_name | Overhead (engineering) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.45244520902633667 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/generative-model |
| keywords[10].score | 0.42042994499206543 |
| keywords[10].display_name | Generative model |
| keywords[11].id | https://openalex.org/keywords/generative-grammar |
| keywords[11].score | 0.33989202976226807 |
| keywords[11].display_name | Generative grammar |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.3354948163032532 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.12425222992897034 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.05544 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.05544 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.05544 |
| locations[1].id | doi:10.48550/arxiv.2306.05544 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.05544 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5112542984 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jiatao Gu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gu, Jiatao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031329242 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shuangfei Zhai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhai, Shuangfei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101959000 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9599-7995 |
| authorships[2].author.display_name | Yizhe Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Yizhe |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101996555 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5765-1213 |
| authorships[3].author.display_name | Lingjie Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Lingjie |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5043808400 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Josh Susskind |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Susskind, Josh |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.05544 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-06-13T00:00:00 |
| display_name | BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11304 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced Neuroimaging Techniques and Applications |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W2280377497, https://openalex.org/W4387506531, https://openalex.org/W4238433571, https://openalex.org/W3174044702, https://openalex.org/W2967848559, https://openalex.org/W4283803360 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.05544 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.05544 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.05544 |
| primary_location.id | pmh:oai:arXiv.org:2306.05544 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.05544 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.05544 |
| publication_date | 2023-06-08 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 29, 42, 86, 107, 115, 125 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.We | 171 |
| abstract_inverted_index.an | 96 |
| abstract_inverted_index.as | 28 |
| abstract_inverted_index.be | 128, 143 |
| abstract_inverted_index.in | 182 |
| abstract_inverted_index.is | 104, 208 |
| abstract_inverted_index.of | 36, 56, 78, 114, 175, 193 |
| abstract_inverted_index.on | 132, 178, 217 |
| abstract_inverted_index.or | 41, 68 |
| abstract_inverted_index.to | 19, 39, 70, 105, 146, 169, 210 |
| abstract_inverted_index.we | 84 |
| abstract_inverted_index.The | 101, 200 |
| abstract_inverted_index.and | 167 |
| abstract_inverted_index.any | 121 |
| abstract_inverted_index.are | 152, 164 |
| abstract_inverted_index.can | 32, 127, 142 |
| abstract_inverted_index.due | 18 |
| abstract_inverted_index.few | 43 |
| abstract_inverted_index.for | 6, 59, 154 |
| abstract_inverted_index.has | 24 |
| abstract_inverted_index.one | 40 |
| abstract_inverted_index.our | 140, 176 |
| abstract_inverted_index.the | 34, 65, 76, 112, 158, 161, 173, 183, 197, 205 |
| abstract_inverted_index.two | 135 |
| abstract_inverted_index.DDIM | 184 |
| abstract_inverted_index.Such | 124 |
| abstract_inverted_index.able | 209 |
| abstract_inverted_index.been | 25 |
| abstract_inverted_index.core | 102 |
| abstract_inverted_index.data | 63 |
| abstract_inverted_index.fact | 159 |
| abstract_inverted_index.from | 15, 64, 134 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.help | 77 |
| abstract_inverted_index.idea | 103 |
| abstract_inverted_index.more | 218 |
| abstract_inverted_index.need | 69 |
| abstract_inverted_index.real | 79 |
| abstract_inverted_index.sets | 163 |
| abstract_inverted_index.show | 203 |
| abstract_inverted_index.slow | 16 |
| abstract_inverted_index.than | 196 |
| abstract_inverted_index.that | 31, 91, 110, 160, 204 |
| abstract_inverted_index.this | 82 |
| abstract_inverted_index.time | 122 |
| abstract_inverted_index.with | 75, 95 |
| abstract_inverted_index.BOOT, | 90 |
| abstract_inverted_index.based | 131 |
| abstract_inverted_index.being | 191 |
| abstract_inverted_index.data. | 80 |
| abstract_inverted_index.given | 120, 157 |
| abstract_inverted_index.large | 166 |
| abstract_inverted_index.learn | 106 |
| abstract_inverted_index.light | 216 |
| abstract_inverted_index.model | 67, 109, 118, 126 |
| abstract_inverted_index.novel | 87 |
| abstract_inverted_index.often | 13, 165 |
| abstract_inverted_index.step. | 123 |
| abstract_inverted_index.steps | 38 |
| abstract_inverted_index.their | 11 |
| abstract_inverted_index.these | 93 |
| abstract_inverted_index.which | 151 |
| abstract_inverted_index.while | 190 |
| abstract_inverted_index.work, | 83 |
| abstract_inverted_index.called | 89 |
| abstract_inverted_index.easily | 144 |
| abstract_inverted_index.either | 52 |
| abstract_inverted_index.faster | 195 |
| abstract_inverted_index.handle | 211 |
| abstract_inverted_index.highly | 212 |
| abstract_inverted_index.method | 141 |
| abstract_inverted_index.models | 1 |
| abstract_inverted_index.number | 35 |
| abstract_inverted_index.online | 73 |
| abstract_inverted_index.orders | 192 |
| abstract_inverted_index.output | 113 |
| abstract_inverted_index.reduce | 33 |
| abstract_inverted_index.remedy | 30 |
| abstract_inverted_index.steps. | 138 |
| abstract_inverted_index.access. | 170 |
| abstract_inverted_index.adapted | 145 |
| abstract_inverted_index.amounts | 55 |
| abstract_inverted_index.complex | 213 |
| abstract_inverted_index.diverse | 8 |
| abstract_inverted_index.images. | 9 |
| abstract_inverted_index.methods | 51, 156 |
| abstract_inverted_index.models, | 150 |
| abstract_inverted_index.offline | 57 |
| abstract_inverted_index.perform | 71 |
| abstract_inverted_index.present | 85 |
| abstract_inverted_index.quality | 46, 189 |
| abstract_inverted_index.require | 53 |
| abstract_inverted_index.results | 202 |
| abstract_inverted_index.sampled | 137 |
| abstract_inverted_index.several | 179 |
| abstract_inverted_index.suffers | 14 |
| abstract_inverted_index.teacher | 66, 119 |
| abstract_inverted_index.trained | 130 |
| abstract_inverted_index.without | 44 |
| abstract_inverted_index.However, | 10, 48 |
| abstract_inverted_index.approach | 177, 207 |
| abstract_inverted_index.datasets | 181 |
| abstract_inverted_index.existing | 49 |
| abstract_inverted_index.learning | 74 |
| abstract_inverted_index.predicts | 111 |
| abstract_inverted_index.proposed | 27, 206 |
| abstract_inverted_index.recently | 26 |
| abstract_inverted_index.setting, | 185 |
| abstract_inverted_index.shedding | 215 |
| abstract_inverted_index.teacher. | 199 |
| abstract_inverted_index.training | 62, 162 |
| abstract_inverted_index.Diffusion | 0 |
| abstract_inverted_index.Knowledge | 22 |
| abstract_inverted_index.achieving | 186 |
| abstract_inverted_index.benchmark | 180 |
| abstract_inverted_index.data-free | 98 |
| abstract_inverted_index.difficult | 168 |
| abstract_inverted_index.diffusion | 117, 149, 198 |
| abstract_inverted_index.efficient | 97, 219 |
| abstract_inverted_index.excellent | 4 |
| abstract_inverted_index.expensive | 72 |
| abstract_inverted_index.inference | 37 |
| abstract_inverted_index.iterative | 20 |
| abstract_inverted_index.magnitude | 194 |
| abstract_inverted_index.modeling. | 221 |
| abstract_inverted_index.overcomes | 92 |
| abstract_inverted_index.potential | 5 |
| abstract_inverted_index.synthetic | 61 |
| abstract_inverted_index.technique | 88 |
| abstract_inverted_index.algorithm. | 100 |
| abstract_inverted_index.comparable | 187 |
| abstract_inverted_index.denoising. | 21 |
| abstract_inverted_index.generating | 7, 60 |
| abstract_inverted_index.generation | 17, 188 |
| abstract_inverted_index.generative | 220 |
| abstract_inverted_index.challenging | 153 |
| abstract_inverted_index.computation | 58 |
| abstract_inverted_index.consecutive | 136 |
| abstract_inverted_index.demonstrate | 172 |
| abstract_inverted_index.efficiently | 129 |
| abstract_inverted_index.large-scale | 147 |
| abstract_inverted_index.limitations | 94 |
| abstract_inverted_index.performance | 12 |
| abstract_inverted_index.pre-trained | 116 |
| abstract_inverted_index.significant | 45, 54 |
| abstract_inverted_index.Furthermore, | 139 |
| abstract_inverted_index.conventional | 155 |
| abstract_inverted_index.degradation. | 47 |
| abstract_inverted_index.demonstrated | 3 |
| abstract_inverted_index.distillation | 23, 50, 99 |
| abstract_inverted_index.bootstrapping | 133 |
| abstract_inverted_index.effectiveness | 174 |
| abstract_inverted_index.text-to-image | 148, 201 |
| abstract_inverted_index.distributions, | 214 |
| abstract_inverted_index.time-conditioned | 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |