Bootstrapping Lasso in Generalized Linear Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.19515
Generalized linear models or GLM constitute plethora of sub-models which extends the ordinary linear regression by connecting the mean of response variable with the covariates through appropriate link functions. On the other hand, Lasso is a popular and easy-to-implement penalization method in regression when not all covariates are relevant. However, Lasso does not generally have a tractable asymptotic distribution (Knight and Fu (2000)). In this paper, we develop a Bootstrap method which works as an alternative to the asymptotic distribution of Lasso for all the submodels of GLM. We support our theoretical findings by showing good finite-sample properties of the proposed Bootstrap method through a moderately large simulation study. We also implement our method on a real data set.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.19515
- https://arxiv.org/pdf/2403.19515
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393336148
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393336148Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.19515Digital Object Identifier
- Title
-
Bootstrapping Lasso in Generalized Linear ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-28Full publication date if available
- Authors
-
Mayukh Choudhury, Debraj DasList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.19515Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.19515Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.19515Direct OA link when available
- Concepts
-
Bootstrapping (finance), Lasso (programming language), Generalized linear model, Cross-validation, Linear model, Mathematics, Generalized linear mixed model, Econometrics, Computer science, Statistics, Applied mathematics, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393336148 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.19515 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.19515 |
| ids.openalex | https://openalex.org/W4393336148 |
| fwci | |
| type | preprint |
| title | Bootstrapping Lasso in Generalized Linear Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9700999855995178 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T12011 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9667999744415283 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3317 |
| topics[1].subfield.display_name | Demography |
| topics[1].display_name | Insurance, Mortality, Demography, Risk Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C207609745 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8875914812088013 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4944086 |
| concepts[0].display_name | Bootstrapping (finance) |
| concepts[1].id | https://openalex.org/C37616216 |
| concepts[1].level | 2 |
| concepts[1].score | 0.752677321434021 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[1].display_name | Lasso (programming language) |
| concepts[2].id | https://openalex.org/C41587187 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6800985336303711 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1501882 |
| concepts[2].display_name | Generalized linear model |
| concepts[3].id | https://openalex.org/C27181475 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6276019811630249 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q541014 |
| concepts[3].display_name | Cross-validation |
| concepts[4].id | https://openalex.org/C163175372 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48329976201057434 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[4].display_name | Linear model |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4373611509799957 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C153720581 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43466657400131226 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5532490 |
| concepts[6].display_name | Generalized linear mixed model |
| concepts[7].id | https://openalex.org/C149782125 |
| concepts[7].level | 1 |
| concepts[7].score | 0.428394079208374 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[7].display_name | Econometrics |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.38194334506988525 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37702399492263794 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3390272557735443 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| concepts[11].id | https://openalex.org/C136764020 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[11].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/bootstrapping |
| keywords[0].score | 0.8875914812088013 |
| keywords[0].display_name | Bootstrapping (finance) |
| keywords[1].id | https://openalex.org/keywords/lasso |
| keywords[1].score | 0.752677321434021 |
| keywords[1].display_name | Lasso (programming language) |
| keywords[2].id | https://openalex.org/keywords/generalized-linear-model |
| keywords[2].score | 0.6800985336303711 |
| keywords[2].display_name | Generalized linear model |
| keywords[3].id | https://openalex.org/keywords/cross-validation |
| keywords[3].score | 0.6276019811630249 |
| keywords[3].display_name | Cross-validation |
| keywords[4].id | https://openalex.org/keywords/linear-model |
| keywords[4].score | 0.48329976201057434 |
| keywords[4].display_name | Linear model |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.4373611509799957 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/generalized-linear-mixed-model |
| keywords[6].score | 0.43466657400131226 |
| keywords[6].display_name | Generalized linear mixed model |
| keywords[7].id | https://openalex.org/keywords/econometrics |
| keywords[7].score | 0.428394079208374 |
| keywords[7].display_name | Econometrics |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.38194334506988525 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.37702399492263794 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/applied-mathematics |
| keywords[10].score | 0.3390272557735443 |
| keywords[10].display_name | Applied mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.19515 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.19515 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.19515 |
| locations[1].id | doi:10.48550/arxiv.2403.19515 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.19515 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5066210363 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mayukh Choudhury |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Choudhury, Mayukh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5065965915 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8776-7065 |
| authorships[1].author.display_name | Debraj Das |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Das, Debraj |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.19515 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-03-30T00:00:00 |
| display_name | Bootstrapping Lasso in Generalized Linear Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9700999855995178 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W2800240633, https://openalex.org/W4249888275, https://openalex.org/W3081465059, https://openalex.org/W2905399339, https://openalex.org/W1559103440, https://openalex.org/W1510072949, https://openalex.org/W2049162494, https://openalex.org/W1556631438, https://openalex.org/W2356286374, https://openalex.org/W1600050343 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.19515 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.19515 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.19515 |
| primary_location.id | pmh:oai:arXiv.org:2403.19515 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.19515 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.19515 |
| publication_date | 2024-03-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 55, 68, 104, 115 |
| abstract_inverted_index.Fu | 61 |
| abstract_inverted_index.In | 63 |
| abstract_inverted_index.On | 29 |
| abstract_inverted_index.We | 88, 109 |
| abstract_inverted_index.an | 74 |
| abstract_inverted_index.as | 73 |
| abstract_inverted_index.by | 15, 93 |
| abstract_inverted_index.in | 41 |
| abstract_inverted_index.is | 34 |
| abstract_inverted_index.of | 7, 19, 80, 86, 98 |
| abstract_inverted_index.on | 114 |
| abstract_inverted_index.or | 3 |
| abstract_inverted_index.to | 76 |
| abstract_inverted_index.we | 66 |
| abstract_inverted_index.GLM | 4 |
| abstract_inverted_index.all | 45, 83 |
| abstract_inverted_index.and | 37, 60 |
| abstract_inverted_index.are | 47 |
| abstract_inverted_index.for | 82 |
| abstract_inverted_index.not | 44, 52 |
| abstract_inverted_index.our | 90, 112 |
| abstract_inverted_index.the | 11, 17, 23, 30, 77, 84, 99 |
| abstract_inverted_index.GLM. | 87 |
| abstract_inverted_index.also | 110 |
| abstract_inverted_index.data | 117 |
| abstract_inverted_index.does | 51 |
| abstract_inverted_index.good | 95 |
| abstract_inverted_index.have | 54 |
| abstract_inverted_index.link | 27 |
| abstract_inverted_index.mean | 18 |
| abstract_inverted_index.real | 116 |
| abstract_inverted_index.set. | 118 |
| abstract_inverted_index.this | 64 |
| abstract_inverted_index.when | 43 |
| abstract_inverted_index.with | 22 |
| abstract_inverted_index.Lasso | 33, 50, 81 |
| abstract_inverted_index.hand, | 32 |
| abstract_inverted_index.large | 106 |
| abstract_inverted_index.other | 31 |
| abstract_inverted_index.which | 9, 71 |
| abstract_inverted_index.works | 72 |
| abstract_inverted_index.linear | 1, 13 |
| abstract_inverted_index.method | 40, 70, 102, 113 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.paper, | 65 |
| abstract_inverted_index.study. | 108 |
| abstract_inverted_index.(Knight | 59 |
| abstract_inverted_index.develop | 67 |
| abstract_inverted_index.extends | 10 |
| abstract_inverted_index.popular | 36 |
| abstract_inverted_index.showing | 94 |
| abstract_inverted_index.support | 89 |
| abstract_inverted_index.through | 25, 103 |
| abstract_inverted_index.(2000)). | 62 |
| abstract_inverted_index.However, | 49 |
| abstract_inverted_index.findings | 92 |
| abstract_inverted_index.ordinary | 12 |
| abstract_inverted_index.plethora | 6 |
| abstract_inverted_index.proposed | 100 |
| abstract_inverted_index.response | 20 |
| abstract_inverted_index.variable | 21 |
| abstract_inverted_index.Bootstrap | 69, 101 |
| abstract_inverted_index.generally | 53 |
| abstract_inverted_index.implement | 111 |
| abstract_inverted_index.relevant. | 48 |
| abstract_inverted_index.submodels | 85 |
| abstract_inverted_index.tractable | 56 |
| abstract_inverted_index.asymptotic | 57, 78 |
| abstract_inverted_index.connecting | 16 |
| abstract_inverted_index.constitute | 5 |
| abstract_inverted_index.covariates | 24, 46 |
| abstract_inverted_index.functions. | 28 |
| abstract_inverted_index.moderately | 105 |
| abstract_inverted_index.properties | 97 |
| abstract_inverted_index.regression | 14, 42 |
| abstract_inverted_index.simulation | 107 |
| abstract_inverted_index.sub-models | 8 |
| abstract_inverted_index.Generalized | 0 |
| abstract_inverted_index.alternative | 75 |
| abstract_inverted_index.appropriate | 26 |
| abstract_inverted_index.theoretical | 91 |
| abstract_inverted_index.distribution | 58, 79 |
| abstract_inverted_index.penalization | 39 |
| abstract_inverted_index.finite-sample | 96 |
| abstract_inverted_index.easy-to-implement | 38 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |