Boundary Layer Article Swipe
Related Concepts
Prandtl number
Boundary layer
Blasius boundary layer
Polynomial
Boundary layer thickness
Laminar flow
Mathematical analysis
Mathematics
Boundary (topology)
Geometry
Layer (electronics)
Boundary layer control
Simple (philosophy)
Physics
Materials science
Mechanics
Convection
Composite material
Epistemology
Philosophy
Michel Deville
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-031-04683-4_7
· OA: W4294738931
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-031-04683-4_7
· OA: W4294738931
The Prandtl’s equations for laminar boundary layer are obtained via dimensional analysis. The case of the flat plate is treated as a suitable example for the development of the boundary layer on a simple geometry. Various thicknesses are introduced. The integration of Prandtl’s equation across the boundary layer produces the von Kármán integral equation which allows the elaboration of the approximate von Kármán-Pohlhausen method where the velocity profile is given as a polynomial. The use of a third degree polynomial for the flat plate demonstrates the feasibility of the approach.
Related Topics
Finding more related topics…