Boundary points, Minimal $L^{2}$ integrals and Concavity property Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.01648
For the purpose of proving the strong openness conjecture of multiplier ideal sheaves, Jonsson-Mustaţă posed an enhanced conjecture and proved the two-dimensional case, which says that: the Lebesgue measure of the set $\big\{c_o^F(ψ)ψ-\log|F|<\log r\big\}$ divided by $r^2$ has a uniform positive lower bound independent of $r$, for a plurisubharmonic function $ψ$ and a holomorphic function $F$ near the origin $o$. Jonsson-Mustaţă's conjecture was proved by Guan-Zhou depending on the truth of the strong openness conjecture. However, it is still a question whether one can prove Jonsson-Mustaţă's conjecture without using the strong openness property, and obtain a sharp effectiveness result for this conjecture. In this article, we use an $L^2$ method with the weight functions $ψ-\log|F|$ and firstly consider a module at at a boundary point of the sublevel sets of a plurisubharmonic function. By studying the minimal $L^{2}$ integrals on the sublevel sets of a plurisubharmonic function with respect to the module at the boundary point, we establish a concavity property of the minimal $L^{2}$ integrals. As applications, we obtain a sharp effectiveness result related to Jonsson-Mustaţă's conjecture, which completes the approach from the conjecture to the strong openness property. We also obtain a strong openness property of the module and a lower semi-continuity property with respect to the module.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.01648
- https://arxiv.org/pdf/2203.01648
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221142556
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221142556Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.01648Digital Object Identifier
- Title
-
Boundary points, Minimal $L^{2}$ integrals and Concavity propertyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-03Full publication date if available
- Authors
-
Shijie Bao, Qi’an Guan, Zheng YuanList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.01648Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.01648Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.01648Direct OA link when available
- Concepts
-
Property (philosophy), Boundary (topology), Mathematics, Mathematical analysis, Geometry, Applied mathematics, Philosophy, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221142556 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.01648 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.01648 |
| ids.openalex | https://openalex.org/W4221142556 |
| fwci | |
| type | preprint |
| title | Boundary points, Minimal $L^{2}$ integrals and Concavity property |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13234 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9929999709129333 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | advanced mathematical theories |
| topics[1].id | https://openalex.org/T10229 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9901000261306763 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Geometric Analysis and Curvature Flows |
| topics[2].id | https://openalex.org/T12396 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9876000285148621 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2608 |
| topics[2].subfield.display_name | Geometry and Topology |
| topics[2].display_name | Advanced Differential Equations and Dynamical Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C189950617 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6979033350944519 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q937228 |
| concepts[0].display_name | Property (philosophy) |
| concepts[1].id | https://openalex.org/C62354387 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6125453114509583 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q875399 |
| concepts[1].display_name | Boundary (topology) |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5158016681671143 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C134306372 |
| concepts[3].level | 1 |
| concepts[3].score | 0.42683786153793335 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[3].display_name | Mathematical analysis |
| concepts[4].id | https://openalex.org/C2524010 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3337245583534241 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[4].display_name | Geometry |
| concepts[5].id | https://openalex.org/C28826006 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32598450779914856 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[5].display_name | Applied mathematics |
| concepts[6].id | https://openalex.org/C138885662 |
| concepts[6].level | 0 |
| concepts[6].score | 0.05477812886238098 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[6].display_name | Philosophy |
| concepts[7].id | https://openalex.org/C111472728 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[7].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/property |
| keywords[0].score | 0.6979033350944519 |
| keywords[0].display_name | Property (philosophy) |
| keywords[1].id | https://openalex.org/keywords/boundary |
| keywords[1].score | 0.6125453114509583 |
| keywords[1].display_name | Boundary (topology) |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.5158016681671143 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[3].score | 0.42683786153793335 |
| keywords[3].display_name | Mathematical analysis |
| keywords[4].id | https://openalex.org/keywords/geometry |
| keywords[4].score | 0.3337245583534241 |
| keywords[4].display_name | Geometry |
| keywords[5].id | https://openalex.org/keywords/applied-mathematics |
| keywords[5].score | 0.32598450779914856 |
| keywords[5].display_name | Applied mathematics |
| keywords[6].id | https://openalex.org/keywords/philosophy |
| keywords[6].score | 0.05477812886238098 |
| keywords[6].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.01648 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.01648 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.01648 |
| locations[1].id | doi:10.48550/arxiv.2203.01648 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.01648 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100554695 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shijie Bao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bao, Shijie |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102992506 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6151-3059 |
| authorships[1].author.display_name | Qi’an Guan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guan, Qi'an |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5028562219 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2406-1708 |
| authorships[2].author.display_name | Zheng Yuan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yuan, Zheng |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.01648 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Boundary points, Minimal $L^{2}$ integrals and Concavity property |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13234 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9929999709129333 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | advanced mathematical theories |
| related_works | https://openalex.org/W2582753012, https://openalex.org/W4300101497, https://openalex.org/W2962977872, https://openalex.org/W2379797514, https://openalex.org/W2391763874, https://openalex.org/W2036456628, https://openalex.org/W2391530279, https://openalex.org/W2490685291, https://openalex.org/W110222820, https://openalex.org/W4220826729 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.01648 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.01648 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.01648 |
| primary_location.id | pmh:oai:arXiv.org:2203.01648 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.01648 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.01648 |
| publication_date | 2022-03-03 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 38, 47, 52, 79, 95, 118, 122, 130, 144, 158, 170, 193, 201 |
| abstract_inverted_index.As | 166 |
| abstract_inverted_index.By | 133 |
| abstract_inverted_index.In | 102 |
| abstract_inverted_index.We | 190 |
| abstract_inverted_index.an | 15, 107 |
| abstract_inverted_index.at | 120, 121, 152 |
| abstract_inverted_index.by | 35, 64 |
| abstract_inverted_index.is | 77 |
| abstract_inverted_index.it | 76 |
| abstract_inverted_index.of | 3, 9, 29, 44, 70, 125, 129, 143, 161, 197 |
| abstract_inverted_index.on | 67, 139 |
| abstract_inverted_index.to | 149, 175, 185, 207 |
| abstract_inverted_index.we | 105, 156, 168 |
| abstract_inverted_index.$F$ | 55 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.and | 18, 51, 93, 115, 200 |
| abstract_inverted_index.can | 83 |
| abstract_inverted_index.for | 46, 99 |
| abstract_inverted_index.has | 37 |
| abstract_inverted_index.one | 82 |
| abstract_inverted_index.set | 31 |
| abstract_inverted_index.the | 1, 5, 20, 26, 30, 57, 68, 71, 89, 111, 126, 135, 140, 150, 153, 162, 180, 183, 186, 198, 208 |
| abstract_inverted_index.use | 106 |
| abstract_inverted_index.was | 62 |
| abstract_inverted_index.$o$. | 59 |
| abstract_inverted_index.$r$, | 45 |
| abstract_inverted_index.$ψ$ | 50 |
| abstract_inverted_index.also | 191 |
| abstract_inverted_index.from | 182 |
| abstract_inverted_index.near | 56 |
| abstract_inverted_index.says | 24 |
| abstract_inverted_index.sets | 128, 142 |
| abstract_inverted_index.this | 100, 103 |
| abstract_inverted_index.with | 110, 147, 205 |
| abstract_inverted_index.$L^2$ | 108 |
| abstract_inverted_index.$r^2$ | 36 |
| abstract_inverted_index.bound | 42 |
| abstract_inverted_index.case, | 22 |
| abstract_inverted_index.ideal | 11 |
| abstract_inverted_index.lower | 41, 202 |
| abstract_inverted_index.point | 124 |
| abstract_inverted_index.posed | 14 |
| abstract_inverted_index.prove | 84 |
| abstract_inverted_index.sharp | 96, 171 |
| abstract_inverted_index.still | 78 |
| abstract_inverted_index.that: | 25 |
| abstract_inverted_index.truth | 69 |
| abstract_inverted_index.using | 88 |
| abstract_inverted_index.which | 23, 178 |
| abstract_inverted_index.method | 109 |
| abstract_inverted_index.module | 119, 151, 199 |
| abstract_inverted_index.obtain | 94, 169, 192 |
| abstract_inverted_index.origin | 58 |
| abstract_inverted_index.point, | 155 |
| abstract_inverted_index.proved | 19, 63 |
| abstract_inverted_index.result | 98, 173 |
| abstract_inverted_index.strong | 6, 72, 90, 187, 194 |
| abstract_inverted_index.weight | 112 |
| abstract_inverted_index.$L^{2}$ | 137, 164 |
| abstract_inverted_index.divided | 34 |
| abstract_inverted_index.firstly | 116 |
| abstract_inverted_index.measure | 28 |
| abstract_inverted_index.minimal | 136, 163 |
| abstract_inverted_index.module. | 209 |
| abstract_inverted_index.proving | 4 |
| abstract_inverted_index.purpose | 2 |
| abstract_inverted_index.related | 174 |
| abstract_inverted_index.respect | 148, 206 |
| abstract_inverted_index.uniform | 39 |
| abstract_inverted_index.whether | 81 |
| abstract_inverted_index.without | 87 |
| abstract_inverted_index.However, | 75 |
| abstract_inverted_index.Lebesgue | 27 |
| abstract_inverted_index.approach | 181 |
| abstract_inverted_index.article, | 104 |
| abstract_inverted_index.boundary | 123, 154 |
| abstract_inverted_index.consider | 117 |
| abstract_inverted_index.enhanced | 16 |
| abstract_inverted_index.function | 49, 54, 146 |
| abstract_inverted_index.openness | 7, 73, 91, 188, 195 |
| abstract_inverted_index.positive | 40 |
| abstract_inverted_index.property | 160, 196, 204 |
| abstract_inverted_index.question | 80 |
| abstract_inverted_index.r\big\}$ | 33 |
| abstract_inverted_index.sheaves, | 12 |
| abstract_inverted_index.studying | 134 |
| abstract_inverted_index.sublevel | 127, 141 |
| abstract_inverted_index.Guan-Zhou | 65 |
| abstract_inverted_index.completes | 179 |
| abstract_inverted_index.concavity | 159 |
| abstract_inverted_index.depending | 66 |
| abstract_inverted_index.establish | 157 |
| abstract_inverted_index.function. | 132 |
| abstract_inverted_index.functions | 113 |
| abstract_inverted_index.integrals | 138 |
| abstract_inverted_index.property, | 92 |
| abstract_inverted_index.property. | 189 |
| abstract_inverted_index.conjecture | 8, 17, 61, 86, 184 |
| abstract_inverted_index.integrals. | 165 |
| abstract_inverted_index.multiplier | 10 |
| abstract_inverted_index.conjecture, | 177 |
| abstract_inverted_index.conjecture. | 74, 101 |
| abstract_inverted_index.holomorphic | 53 |
| abstract_inverted_index.independent | 43 |
| abstract_inverted_index.$ψ-\log|F|$ | 114 |
| abstract_inverted_index.applications, | 167 |
| abstract_inverted_index.effectiveness | 97, 172 |
| abstract_inverted_index.semi-continuity | 203 |
| abstract_inverted_index.two-dimensional | 21 |
| abstract_inverted_index.plurisubharmonic | 48, 131, 145 |
| abstract_inverted_index.Jonsson-Mustaţă | 13 |
| abstract_inverted_index.Jonsson-Mustaţă's | 60, 85, 176 |
| abstract_inverted_index.$\big\{c_o^F(ψ)ψ-\log|F|<\log | 32 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |