Bounding the Last Mile: Efficient Learned String Indexing Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2111.14905
We introduce the RadixStringSpline (RSS) learned index structure for efficiently indexing strings. RSS is a tree of radix splines each indexing a fixed number of bytes. RSS approaches or exceeds the performance of traditional string indexes while using 7-70$\times$ less memory. RSS achieves this by using the minimal string prefix to sufficiently distinguish the data unlike most learned approaches which index the entire string. Additionally, the bounded-error nature of RSS accelerates the last mile search and also enables a memory-efficient hash-table lookup accelerator. We benchmark RSS on several real-world string datasets against ART and HOT. Our experiments suggest this line of research may be promising for future memory-intensive database applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2111.14905
- https://arxiv.org/pdf/2111.14905
- OA Status
- green
- Cited By
- 7
- References
- 10
- OpenAlex ID
- https://openalex.org/W3216813966
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3216813966Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2111.14905Digital Object Identifier
- Title
-
Bounding the Last Mile: Efficient Learned String IndexingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-29Full publication date if available
- Authors
-
Benjamin Spector, Andreas Kipf, Kapil Vaidya, Chi Wang, Umar Farooq Minhas, Tim KraskaList of authors in order
- Landing page
-
https://arxiv.org/abs/2111.14905Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2111.14905Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.14905Direct OA link when available
- Concepts
-
RSS, Hash table, Search engine indexing, Computer science, String (physics), Hash function, Bounding overwatch, Byte, Trie, Benchmark (surveying), Prefix, Theoretical computer science, Data structure, Data mining, Information retrieval, Mathematics, Artificial intelligence, World Wide Web, Geography, Programming language, Linguistics, Geodesy, Mathematical physics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 3, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
10Number of works referenced by this work
Full payload
| id | https://openalex.org/W3216813966 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2111.14905 |
| ids.doi | https://doi.org/10.48550/arxiv.2111.14905 |
| ids.mag | 3216813966 |
| ids.openalex | https://openalex.org/W3216813966 |
| fwci | |
| type | preprint |
| title | Bounding the Last Mile: Efficient Learned String Indexing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11269 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Algorithms and Data Compression |
| topics[1].id | https://openalex.org/T12016 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Web Data Mining and Analysis |
| topics[2].id | https://openalex.org/T12326 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9979000091552734 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1708 |
| topics[2].subfield.display_name | Hardware and Architecture |
| topics[2].display_name | Network Packet Processing and Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2385561 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8353902101516724 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q45432 |
| concepts[0].display_name | RSS |
| concepts[1].id | https://openalex.org/C67388219 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7477240562438965 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q207440 |
| concepts[1].display_name | Hash table |
| concepts[2].id | https://openalex.org/C75165309 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7405457496643066 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2258979 |
| concepts[2].display_name | Search engine indexing |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7063053846359253 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C157486923 |
| concepts[4].level | 2 |
| concepts[4].score | 0.656385600566864 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1376436 |
| concepts[4].display_name | String (physics) |
| concepts[5].id | https://openalex.org/C99138194 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6181098222732544 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q183427 |
| concepts[5].display_name | Hash function |
| concepts[6].id | https://openalex.org/C63584917 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5566142201423645 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q333286 |
| concepts[6].display_name | Bounding overwatch |
| concepts[7].id | https://openalex.org/C43364308 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4815112054347992 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8799 |
| concepts[7].display_name | Byte |
| concepts[8].id | https://openalex.org/C190290938 |
| concepts[8].level | 3 |
| concepts[8].score | 0.47957056760787964 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q387015 |
| concepts[8].display_name | Trie |
| concepts[9].id | https://openalex.org/C185798385 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4364967942237854 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[9].display_name | Benchmark (surveying) |
| concepts[10].id | https://openalex.org/C141603448 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42761659622192383 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q134830 |
| concepts[10].display_name | Prefix |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3794068992137909 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C162319229 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3538604974746704 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q175263 |
| concepts[12].display_name | Data structure |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.35370415449142456 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C23123220 |
| concepts[14].level | 1 |
| concepts[14].score | 0.25592511892318726 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[14].display_name | Information retrieval |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.21331441402435303 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1944049894809723 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C136764020 |
| concepts[17].level | 1 |
| concepts[17].score | 0.09207883477210999 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[17].display_name | World Wide Web |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0849447250366211 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0841030478477478 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| concepts[20].id | https://openalex.org/C41895202 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[20].display_name | Linguistics |
| concepts[21].id | https://openalex.org/C13280743 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[21].display_name | Geodesy |
| concepts[22].id | https://openalex.org/C37914503 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q156495 |
| concepts[22].display_name | Mathematical physics |
| concepts[23].id | https://openalex.org/C138885662 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[23].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/rss |
| keywords[0].score | 0.8353902101516724 |
| keywords[0].display_name | RSS |
| keywords[1].id | https://openalex.org/keywords/hash-table |
| keywords[1].score | 0.7477240562438965 |
| keywords[1].display_name | Hash table |
| keywords[2].id | https://openalex.org/keywords/search-engine-indexing |
| keywords[2].score | 0.7405457496643066 |
| keywords[2].display_name | Search engine indexing |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7063053846359253 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/string |
| keywords[4].score | 0.656385600566864 |
| keywords[4].display_name | String (physics) |
| keywords[5].id | https://openalex.org/keywords/hash-function |
| keywords[5].score | 0.6181098222732544 |
| keywords[5].display_name | Hash function |
| keywords[6].id | https://openalex.org/keywords/bounding-overwatch |
| keywords[6].score | 0.5566142201423645 |
| keywords[6].display_name | Bounding overwatch |
| keywords[7].id | https://openalex.org/keywords/byte |
| keywords[7].score | 0.4815112054347992 |
| keywords[7].display_name | Byte |
| keywords[8].id | https://openalex.org/keywords/trie |
| keywords[8].score | 0.47957056760787964 |
| keywords[8].display_name | Trie |
| keywords[9].id | https://openalex.org/keywords/benchmark |
| keywords[9].score | 0.4364967942237854 |
| keywords[9].display_name | Benchmark (surveying) |
| keywords[10].id | https://openalex.org/keywords/prefix |
| keywords[10].score | 0.42761659622192383 |
| keywords[10].display_name | Prefix |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.3794068992137909 |
| keywords[11].display_name | Theoretical computer science |
| keywords[12].id | https://openalex.org/keywords/data-structure |
| keywords[12].score | 0.3538604974746704 |
| keywords[12].display_name | Data structure |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.35370415449142456 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/information-retrieval |
| keywords[14].score | 0.25592511892318726 |
| keywords[14].display_name | Information retrieval |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.21331441402435303 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.1944049894809723 |
| keywords[16].display_name | Artificial intelligence |
| keywords[17].id | https://openalex.org/keywords/world-wide-web |
| keywords[17].score | 0.09207883477210999 |
| keywords[17].display_name | World Wide Web |
| keywords[18].id | https://openalex.org/keywords/geography |
| keywords[18].score | 0.0849447250366211 |
| keywords[18].display_name | Geography |
| keywords[19].id | https://openalex.org/keywords/programming-language |
| keywords[19].score | 0.0841030478477478 |
| keywords[19].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2111.14905 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2111.14905 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2111.14905 |
| locations[1].id | mag:3216813966 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | http://arxiv.org/pdf/2111.14905.pdf |
| locations[2].id | doi:10.48550/arxiv.2111.14905 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2111.14905 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5004675499 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0468-5986 |
| authorships[0].author.display_name | Benjamin Spector |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[0].affiliations[0].raw_affiliation_string | Massachusetts Institute Of Technology#TAB# |
| authorships[0].institutions[0].id | https://openalex.org/I63966007 |
| authorships[0].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Benjamin Spector |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Massachusetts Institute Of Technology#TAB# |
| authorships[1].author.id | https://openalex.org/A5046188245 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3463-0564 |
| authorships[1].author.display_name | Andreas Kipf |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[1].affiliations[0].raw_affiliation_string | Massachusetts Institute Of Technology#TAB# |
| authorships[1].institutions[0].id | https://openalex.org/I63966007 |
| authorships[1].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andreas Kipf |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Massachusetts Institute Of Technology#TAB# |
| authorships[2].author.id | https://openalex.org/A5021956406 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-1435-5927 |
| authorships[2].author.display_name | Kapil Vaidya |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[2].affiliations[0].raw_affiliation_string | Massachusetts Institute Of Technology#TAB# |
| authorships[2].institutions[0].id | https://openalex.org/I63966007 |
| authorships[2].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kapil Vaidya |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Massachusetts Institute Of Technology#TAB# |
| authorships[3].author.id | https://openalex.org/A5100342202 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5610-5547 |
| authorships[3].author.display_name | Chi Wang |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210164937 |
| authorships[3].affiliations[0].raw_affiliation_string | (Microsoft) |
| authorships[3].institutions[0].id | https://openalex.org/I4210164937 |
| authorships[3].institutions[0].ror | https://ror.org/05k87vq12 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1290206253, https://openalex.org/I4210164937 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Microsoft Research (United Kingdom) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chi Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | (Microsoft) |
| authorships[4].author.id | https://openalex.org/A5032253873 |
| authorships[4].author.orcid | https://orcid.org/0009-0005-6520-3794 |
| authorships[4].author.display_name | Umar Farooq Minhas |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210164937 |
| authorships[4].affiliations[0].raw_affiliation_string | (Microsoft) |
| authorships[4].institutions[0].id | https://openalex.org/I4210164937 |
| authorships[4].institutions[0].ror | https://ror.org/05k87vq12 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1290206253, https://openalex.org/I4210164937 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Microsoft Research (United Kingdom) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Umar Farooq Minhas |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | (Microsoft) |
| authorships[5].author.id | https://openalex.org/A5034086130 |
| authorships[5].author.orcid | https://orcid.org/0009-0003-2414-2759 |
| authorships[5].author.display_name | Tim Kraska |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[5].affiliations[0].raw_affiliation_string | Massachusetts Institute Of Technology#TAB# |
| authorships[5].institutions[0].id | https://openalex.org/I63966007 |
| authorships[5].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Tim Kraska |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Massachusetts Institute Of Technology#TAB# |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.14905 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bounding the Last Mile: Efficient Learned String Indexing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11269 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Algorithms and Data Compression |
| cited_by_count | 7 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.14905 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.14905 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.14905 |
| primary_location.id | pmh:oai:arXiv.org:2111.14905 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2111.14905 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2111.14905 |
| publication_date | 2021-11-29 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3013316555, https://openalex.org/W3080797093, https://openalex.org/W3145045951, https://openalex.org/W2054046497, https://openalex.org/W2799221749, https://openalex.org/W2798891709, https://openalex.org/W3031206277, https://openalex.org/W2962771342, https://openalex.org/W2161694911, https://openalex.org/W2030062409 |
| referenced_works_count | 10 |
| abstract_inverted_index.a | 14, 21, 78 |
| abstract_inverted_index.We | 0, 83 |
| abstract_inverted_index.be | 103 |
| abstract_inverted_index.by | 44 |
| abstract_inverted_index.is | 13 |
| abstract_inverted_index.of | 16, 24, 32, 68, 100 |
| abstract_inverted_index.on | 86 |
| abstract_inverted_index.or | 28 |
| abstract_inverted_index.to | 50 |
| abstract_inverted_index.ART | 92 |
| abstract_inverted_index.Our | 95 |
| abstract_inverted_index.RSS | 12, 26, 41, 69, 85 |
| abstract_inverted_index.and | 75, 93 |
| abstract_inverted_index.for | 8, 105 |
| abstract_inverted_index.may | 102 |
| abstract_inverted_index.the | 2, 30, 46, 53, 61, 65, 71 |
| abstract_inverted_index.HOT. | 94 |
| abstract_inverted_index.also | 76 |
| abstract_inverted_index.data | 54 |
| abstract_inverted_index.each | 19 |
| abstract_inverted_index.last | 72 |
| abstract_inverted_index.less | 39 |
| abstract_inverted_index.line | 99 |
| abstract_inverted_index.mile | 73 |
| abstract_inverted_index.most | 56 |
| abstract_inverted_index.this | 43, 98 |
| abstract_inverted_index.tree | 15 |
| abstract_inverted_index.(RSS) | 4 |
| abstract_inverted_index.fixed | 22 |
| abstract_inverted_index.index | 6, 60 |
| abstract_inverted_index.radix | 17 |
| abstract_inverted_index.using | 37, 45 |
| abstract_inverted_index.which | 59 |
| abstract_inverted_index.while | 36 |
| abstract_inverted_index.bytes. | 25 |
| abstract_inverted_index.entire | 62 |
| abstract_inverted_index.future | 106 |
| abstract_inverted_index.lookup | 81 |
| abstract_inverted_index.nature | 67 |
| abstract_inverted_index.number | 23 |
| abstract_inverted_index.prefix | 49 |
| abstract_inverted_index.search | 74 |
| abstract_inverted_index.string | 34, 48, 89 |
| abstract_inverted_index.unlike | 55 |
| abstract_inverted_index.against | 91 |
| abstract_inverted_index.enables | 77 |
| abstract_inverted_index.exceeds | 29 |
| abstract_inverted_index.indexes | 35 |
| abstract_inverted_index.learned | 5, 57 |
| abstract_inverted_index.memory. | 40 |
| abstract_inverted_index.minimal | 47 |
| abstract_inverted_index.several | 87 |
| abstract_inverted_index.splines | 18 |
| abstract_inverted_index.string. | 63 |
| abstract_inverted_index.suggest | 97 |
| abstract_inverted_index.achieves | 42 |
| abstract_inverted_index.database | 108 |
| abstract_inverted_index.datasets | 90 |
| abstract_inverted_index.indexing | 10, 20 |
| abstract_inverted_index.research | 101 |
| abstract_inverted_index.strings. | 11 |
| abstract_inverted_index.benchmark | 84 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.promising | 104 |
| abstract_inverted_index.structure | 7 |
| abstract_inverted_index.approaches | 27, 58 |
| abstract_inverted_index.hash-table | 80 |
| abstract_inverted_index.real-world | 88 |
| abstract_inverted_index.accelerates | 70 |
| abstract_inverted_index.distinguish | 52 |
| abstract_inverted_index.efficiently | 9 |
| abstract_inverted_index.experiments | 96 |
| abstract_inverted_index.performance | 31 |
| abstract_inverted_index.traditional | 33 |
| abstract_inverted_index.7-70$\times$ | 38 |
| abstract_inverted_index.accelerator. | 82 |
| abstract_inverted_index.sufficiently | 51 |
| abstract_inverted_index.Additionally, | 64 |
| abstract_inverted_index.applications. | 109 |
| abstract_inverted_index.bounded-error | 66 |
| abstract_inverted_index.memory-efficient | 79 |
| abstract_inverted_index.memory-intensive | 107 |
| abstract_inverted_index.RadixStringSpline | 3 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |