BoxSeg: Quality-Aware and Peer-Assisted Learning for Box-supervised Instance Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.05137
Box-supervised instance segmentation methods aim to achieve instance segmentation with only box annotations. Recent methods have demonstrated the effectiveness of acquiring high-quality pseudo masks under the teacher-student framework. Building upon this foundation, we propose a BoxSeg framework involving two novel and general modules named the Quality-Aware Module (QAM) and the Peer-assisted Copy-paste (PC). The QAM obtains high-quality pseudo masks and better measures the mask quality to help reduce the effect of noisy masks, by leveraging the quality-aware multi-mask complementation mechanism. The PC imitates Peer-Assisted Learning to further improve the quality of the low-quality masks with the guidance of the obtained high-quality pseudo masks. Theoretical and experimental analyses demonstrate the proposed QAM and PC are effective. Extensive experimental results show the superiority of our BoxSeg over the state-of-the-art methods, and illustrate the QAM and PC can be applied to improve other models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.05137
- https://arxiv.org/pdf/2504.05137
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416118728
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416118728Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.05137Digital Object Identifier
- Title
-
BoxSeg: Quality-Aware and Peer-Assisted Learning for Box-supervised Instance SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-07Full publication date if available
- Authors
-
Jinxiang Lai, Jiawei Zhan, Jian Li, Binbin Gao, Jun Liu, Song GuoList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.05137Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.05137Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.05137Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416118728 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.05137 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.05137 |
| ids.openalex | https://openalex.org/W4416118728 |
| fwci | |
| type | preprint |
| title | BoxSeg: Quality-Aware and Peer-Assisted Learning for Box-supervised Instance Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.05137 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.05137 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.05137 |
| locations[1].id | doi:10.48550/arxiv.2504.05137 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.05137 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5111101973 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jinxiang Lai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lai, Jinxiang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021903335 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jiawei Zhan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhan, Jiawei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100402515 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5749-2734 |
| authorships[2].author.display_name | Jian Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Jian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5110532661 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Binbin Gao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gao, Bin-Bin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100716276 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3228-7443 |
| authorships[4].author.display_name | Jun Liu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Liu, Jun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5043464306 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9831-2202 |
| authorships[5].author.display_name | Song Guo |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Guo, Song |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.05137 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | BoxSeg: Quality-Aware and Peer-Assisted Learning for Box-supervised Instance Segmentation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-28T05:34:32.304445 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.05137 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.05137 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.05137 |
| primary_location.id | pmh:oai:arXiv.org:2504.05137 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.05137 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.05137 |
| publication_date | 2025-04-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 34 |
| abstract_inverted_index.PC | 81, 112, 133 |
| abstract_inverted_index.be | 135 |
| abstract_inverted_index.by | 73 |
| abstract_inverted_index.of | 19, 70, 90, 97, 121 |
| abstract_inverted_index.to | 5, 65, 85, 137 |
| abstract_inverted_index.we | 32 |
| abstract_inverted_index.QAM | 54, 110, 131 |
| abstract_inverted_index.The | 53, 80 |
| abstract_inverted_index.aim | 4 |
| abstract_inverted_index.and | 40, 48, 59, 104, 111, 128, 132 |
| abstract_inverted_index.are | 113 |
| abstract_inverted_index.box | 11 |
| abstract_inverted_index.can | 134 |
| abstract_inverted_index.our | 122 |
| abstract_inverted_index.the | 17, 25, 44, 49, 62, 68, 75, 88, 91, 95, 98, 108, 119, 125, 130 |
| abstract_inverted_index.two | 38 |
| abstract_inverted_index.have | 15 |
| abstract_inverted_index.help | 66 |
| abstract_inverted_index.mask | 63 |
| abstract_inverted_index.only | 10 |
| abstract_inverted_index.over | 124 |
| abstract_inverted_index.show | 118 |
| abstract_inverted_index.this | 30 |
| abstract_inverted_index.upon | 29 |
| abstract_inverted_index.with | 9, 94 |
| abstract_inverted_index.(PC). | 52 |
| abstract_inverted_index.(QAM) | 47 |
| abstract_inverted_index.masks | 23, 58, 93 |
| abstract_inverted_index.named | 43 |
| abstract_inverted_index.noisy | 71 |
| abstract_inverted_index.novel | 39 |
| abstract_inverted_index.other | 139 |
| abstract_inverted_index.under | 24 |
| abstract_inverted_index.BoxSeg | 35, 123 |
| abstract_inverted_index.Module | 46 |
| abstract_inverted_index.Recent | 13 |
| abstract_inverted_index.better | 60 |
| abstract_inverted_index.effect | 69 |
| abstract_inverted_index.masks, | 72 |
| abstract_inverted_index.masks. | 102 |
| abstract_inverted_index.pseudo | 22, 57, 101 |
| abstract_inverted_index.reduce | 67 |
| abstract_inverted_index.achieve | 6 |
| abstract_inverted_index.applied | 136 |
| abstract_inverted_index.further | 86 |
| abstract_inverted_index.general | 41 |
| abstract_inverted_index.improve | 87, 138 |
| abstract_inverted_index.methods | 3, 14 |
| abstract_inverted_index.models. | 140 |
| abstract_inverted_index.modules | 42 |
| abstract_inverted_index.obtains | 55 |
| abstract_inverted_index.propose | 33 |
| abstract_inverted_index.quality | 64, 89 |
| abstract_inverted_index.results | 117 |
| abstract_inverted_index.Building | 28 |
| abstract_inverted_index.Learning | 84 |
| abstract_inverted_index.analyses | 106 |
| abstract_inverted_index.guidance | 96 |
| abstract_inverted_index.imitates | 82 |
| abstract_inverted_index.instance | 1, 7 |
| abstract_inverted_index.measures | 61 |
| abstract_inverted_index.methods, | 127 |
| abstract_inverted_index.obtained | 99 |
| abstract_inverted_index.proposed | 109 |
| abstract_inverted_index.Extensive | 115 |
| abstract_inverted_index.acquiring | 20 |
| abstract_inverted_index.framework | 36 |
| abstract_inverted_index.involving | 37 |
| abstract_inverted_index.Copy-paste | 51 |
| abstract_inverted_index.effective. | 114 |
| abstract_inverted_index.framework. | 27 |
| abstract_inverted_index.illustrate | 129 |
| abstract_inverted_index.leveraging | 74 |
| abstract_inverted_index.mechanism. | 79 |
| abstract_inverted_index.multi-mask | 77 |
| abstract_inverted_index.Theoretical | 103 |
| abstract_inverted_index.demonstrate | 107 |
| abstract_inverted_index.foundation, | 31 |
| abstract_inverted_index.low-quality | 92 |
| abstract_inverted_index.superiority | 120 |
| abstract_inverted_index.annotations. | 12 |
| abstract_inverted_index.demonstrated | 16 |
| abstract_inverted_index.experimental | 105, 116 |
| abstract_inverted_index.high-quality | 21, 56, 100 |
| abstract_inverted_index.segmentation | 2, 8 |
| abstract_inverted_index.Peer-Assisted | 83 |
| abstract_inverted_index.Peer-assisted | 50 |
| abstract_inverted_index.Quality-Aware | 45 |
| abstract_inverted_index.effectiveness | 18 |
| abstract_inverted_index.quality-aware | 76 |
| abstract_inverted_index.Box-supervised | 0 |
| abstract_inverted_index.complementation | 78 |
| abstract_inverted_index.teacher-student | 26 |
| abstract_inverted_index.state-of-the-art | 126 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |