BPLight-CNN: A Photonics-based Backpropagation Accelerator for Deep Learning Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2102.10140
Training deep learning networks involves continuous weight updates across the various layers of the deep network while using a backpropagation algorithm (BP). This results in expensive computation overheads during training. Consequently, most deep learning accelerators today employ pre-trained weights and focus only on improving the design of the inference phase. The recent trend is to build a complete deep learning accelerator by incorporating the training module. Such efforts require an ultra-fast chip architecture for executing the BP algorithm. In this article, we propose a novel photonics-based backpropagation accelerator for high performance deep learning training. We present the design for a convolutional neural network, BPLight-CNN, which incorporates the silicon photonics-based backpropagation accelerator. BPLight-CNN is a first-of-its-kind photonic and memristor-based CNN architecture for end-to-end training and prediction. We evaluate BPLight-CNN using a photonic CAD framework (IPKISS) on deep learning benchmark models including LeNet and VGG-Net. The proposed design achieves (i) at least 34x speedup, 34x improvement in computational efficiency, and 38.5x energy savings, during training; and (ii) 29x speedup, 31x improvement in computational efficiency, and 38.7x improvement in energy savings, during inference compared to the state-of-the-art designs. All these comparisons are done at a 16-bit resolution; and BPLight-CNN achieves these improvements at a cost of approximately 6% lower accuracy compared to the state-of-the-art.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2102.10140
- https://arxiv.org/pdf/2102.10140
- OA Status
- green
- Cited By
- 1
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3132993759
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3132993759Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2102.10140Digital Object Identifier
- Title
-
BPLight-CNN: A Photonics-based Backpropagation Accelerator for Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-19Full publication date if available
- Authors
-
Dharanidhar Dang, Sai Vineel Reddy Chittamuru, Sudeep Pasricha, Rajarshi Mahapatra, Debashis SahooList of authors in order
- Landing page
-
https://arxiv.org/abs/2102.10140Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2102.10140Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2102.10140Direct OA link when available
- Concepts
-
Deep learning, Backpropagation, Computer science, Benchmark (surveying), Convolutional neural network, Speedup, Artificial intelligence, Inference, Artificial neural network, Photonics, Machine learning, Computer engineering, Parallel computing, Geodesy, Physics, Geography, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3132993759 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2102.10140 |
| ids.doi | https://doi.org/10.48550/arxiv.2102.10140 |
| ids.mag | 3132993759 |
| ids.openalex | https://openalex.org/W3132993759 |
| fwci | |
| type | preprint |
| title | BPLight-CNN: A Photonics-based Backpropagation Accelerator for Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12611 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Reservoir Computing |
| topics[1].id | https://openalex.org/T10502 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Memory and Neural Computing |
| topics[2].id | https://openalex.org/T10299 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9961000084877014 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Photonic and Optical Devices |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8472963571548462 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C155032097 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8351829051971436 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q798503 |
| concepts[1].display_name | Backpropagation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7924386858940125 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C185798385 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7146587371826172 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[3].display_name | Benchmark (surveying) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.70851731300354 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C68339613 |
| concepts[5].level | 2 |
| concepts[5].score | 0.685310959815979 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[5].display_name | Speedup |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.6620692610740662 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2776214188 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5441218614578247 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[7].display_name | Inference |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48845377564430237 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C20788544 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4556151330471039 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q467054 |
| concepts[9].display_name | Photonics |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37891459465026855 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C113775141 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3441011309623718 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[11].display_name | Computer engineering |
| concepts[12].id | https://openalex.org/C173608175 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1664435863494873 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[12].display_name | Parallel computing |
| concepts[13].id | https://openalex.org/C13280743 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[13].display_name | Geodesy |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C120665830 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[16].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.8472963571548462 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/backpropagation |
| keywords[1].score | 0.8351829051971436 |
| keywords[1].display_name | Backpropagation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7924386858940125 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/benchmark |
| keywords[3].score | 0.7146587371826172 |
| keywords[3].display_name | Benchmark (surveying) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.70851731300354 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/speedup |
| keywords[5].score | 0.685310959815979 |
| keywords[5].display_name | Speedup |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.6620692610740662 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/inference |
| keywords[7].score | 0.5441218614578247 |
| keywords[7].display_name | Inference |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.48845377564430237 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/photonics |
| keywords[9].score | 0.4556151330471039 |
| keywords[9].display_name | Photonics |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.37891459465026855 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/computer-engineering |
| keywords[11].score | 0.3441011309623718 |
| keywords[11].display_name | Computer engineering |
| keywords[12].id | https://openalex.org/keywords/parallel-computing |
| keywords[12].score | 0.1664435863494873 |
| keywords[12].display_name | Parallel computing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2102.10140 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2102.10140 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2102.10140 |
| locations[1].id | doi:10.48550/arxiv.2102.10140 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2102.10140 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5044935043 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3802-381X |
| authorships[0].author.display_name | Dharanidhar Dang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | D. Dang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057324688 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0918-1755 |
| authorships[1].author.display_name | Sai Vineel Reddy Chittamuru |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | S. V. R. Chittamuru |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5018382547 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0846-0066 |
| authorships[2].author.display_name | Sudeep Pasricha |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | S. Pasricha |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076611650 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0155-0218 |
| authorships[3].author.display_name | Rajarshi Mahapatra |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | R. Mahapatra |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102968085 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2329-8228 |
| authorships[4].author.display_name | Debashis Sahoo |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | D. Sahoo |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2102.10140 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | BPLight-CNN: A Photonics-based Backpropagation Accelerator for Deep Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12611 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Reservoir Computing |
| related_works | https://openalex.org/W2058965144, https://openalex.org/W2164382479, https://openalex.org/W2146343568, https://openalex.org/W98480971, https://openalex.org/W2150291671, https://openalex.org/W2013643406, https://openalex.org/W2027972911, https://openalex.org/W2157978810, https://openalex.org/W2597809628, https://openalex.org/W3046370962 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2102.10140 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2102.10140 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2102.10140 |
| primary_location.id | pmh:oai:arXiv.org:2102.10140 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2102.10140 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2102.10140 |
| publication_date | 2021-02-19 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2802266077, https://openalex.org/W1786851181, https://openalex.org/W2944259519, https://openalex.org/W2517214291, https://openalex.org/W2023824827, https://openalex.org/W2078107154, https://openalex.org/W2412569632, https://openalex.org/W2805862866, https://openalex.org/W2739588406, https://openalex.org/W2013626493, https://openalex.org/W2786981085, https://openalex.org/W1981204644, https://openalex.org/W2097117768, https://openalex.org/W2520083297, https://openalex.org/W2898660405, https://openalex.org/W3103046660, https://openalex.org/W2163605009, https://openalex.org/W2528199276, https://openalex.org/W2112796928, https://openalex.org/W2613989746, https://openalex.org/W2512289754, https://openalex.org/W2018774711, https://openalex.org/W3036548498, https://openalex.org/W1985818188, https://openalex.org/W3099250172, https://openalex.org/W2962835968, https://openalex.org/W2963387357, https://openalex.org/W2588584836, https://openalex.org/W2945546236, https://openalex.org/W2155893237, https://openalex.org/W2164819109, https://openalex.org/W2937010696, https://openalex.org/W2518281301 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 18, 56, 83, 99, 113, 129, 191, 200 |
| abstract_inverted_index.6% | 204 |
| abstract_inverted_index.BP | 76 |
| abstract_inverted_index.In | 78 |
| abstract_inverted_index.We | 94, 125 |
| abstract_inverted_index.an | 69 |
| abstract_inverted_index.at | 148, 190, 199 |
| abstract_inverted_index.by | 61 |
| abstract_inverted_index.in | 24, 154, 169, 175 |
| abstract_inverted_index.is | 53, 112 |
| abstract_inverted_index.of | 12, 46, 202 |
| abstract_inverted_index.on | 42, 134 |
| abstract_inverted_index.to | 54, 181, 208 |
| abstract_inverted_index.we | 81 |
| abstract_inverted_index.(i) | 147 |
| abstract_inverted_index.29x | 165 |
| abstract_inverted_index.31x | 167 |
| abstract_inverted_index.34x | 150, 152 |
| abstract_inverted_index.All | 185 |
| abstract_inverted_index.CAD | 131 |
| abstract_inverted_index.CNN | 118 |
| abstract_inverted_index.The | 50, 143 |
| abstract_inverted_index.and | 39, 116, 123, 141, 157, 163, 172, 194 |
| abstract_inverted_index.are | 188 |
| abstract_inverted_index.for | 73, 88, 98, 120 |
| abstract_inverted_index.the | 9, 13, 44, 47, 63, 75, 96, 106, 182, 209 |
| abstract_inverted_index.(ii) | 164 |
| abstract_inverted_index.Such | 66 |
| abstract_inverted_index.This | 22 |
| abstract_inverted_index.chip | 71 |
| abstract_inverted_index.cost | 201 |
| abstract_inverted_index.deep | 1, 14, 32, 58, 91, 135 |
| abstract_inverted_index.done | 189 |
| abstract_inverted_index.high | 89 |
| abstract_inverted_index.most | 31 |
| abstract_inverted_index.only | 41 |
| abstract_inverted_index.this | 79 |
| abstract_inverted_index.(BP). | 21 |
| abstract_inverted_index.38.5x | 158 |
| abstract_inverted_index.38.7x | 173 |
| abstract_inverted_index.LeNet | 140 |
| abstract_inverted_index.build | 55 |
| abstract_inverted_index.focus | 40 |
| abstract_inverted_index.least | 149 |
| abstract_inverted_index.lower | 205 |
| abstract_inverted_index.novel | 84 |
| abstract_inverted_index.these | 186, 197 |
| abstract_inverted_index.today | 35 |
| abstract_inverted_index.trend | 52 |
| abstract_inverted_index.using | 17, 128 |
| abstract_inverted_index.which | 104 |
| abstract_inverted_index.while | 16 |
| abstract_inverted_index.16-bit | 192 |
| abstract_inverted_index.across | 8 |
| abstract_inverted_index.design | 45, 97, 145 |
| abstract_inverted_index.during | 28, 161, 178 |
| abstract_inverted_index.employ | 36 |
| abstract_inverted_index.energy | 159, 176 |
| abstract_inverted_index.layers | 11 |
| abstract_inverted_index.models | 138 |
| abstract_inverted_index.neural | 101 |
| abstract_inverted_index.phase. | 49 |
| abstract_inverted_index.recent | 51 |
| abstract_inverted_index.weight | 6 |
| abstract_inverted_index.efforts | 67 |
| abstract_inverted_index.module. | 65 |
| abstract_inverted_index.network | 15 |
| abstract_inverted_index.present | 95 |
| abstract_inverted_index.propose | 82 |
| abstract_inverted_index.require | 68 |
| abstract_inverted_index.results | 23 |
| abstract_inverted_index.silicon | 107 |
| abstract_inverted_index.updates | 7 |
| abstract_inverted_index.various | 10 |
| abstract_inverted_index.weights | 38 |
| abstract_inverted_index.(IPKISS) | 133 |
| abstract_inverted_index.Training | 0 |
| abstract_inverted_index.VGG-Net. | 142 |
| abstract_inverted_index.accuracy | 206 |
| abstract_inverted_index.achieves | 146, 196 |
| abstract_inverted_index.article, | 80 |
| abstract_inverted_index.compared | 180, 207 |
| abstract_inverted_index.complete | 57 |
| abstract_inverted_index.designs. | 184 |
| abstract_inverted_index.evaluate | 126 |
| abstract_inverted_index.involves | 4 |
| abstract_inverted_index.learning | 2, 33, 59, 92, 136 |
| abstract_inverted_index.network, | 102 |
| abstract_inverted_index.networks | 3 |
| abstract_inverted_index.photonic | 115, 130 |
| abstract_inverted_index.proposed | 144 |
| abstract_inverted_index.savings, | 160, 177 |
| abstract_inverted_index.speedup, | 151, 166 |
| abstract_inverted_index.training | 64, 122 |
| abstract_inverted_index.algorithm | 20 |
| abstract_inverted_index.benchmark | 137 |
| abstract_inverted_index.executing | 74 |
| abstract_inverted_index.expensive | 25 |
| abstract_inverted_index.framework | 132 |
| abstract_inverted_index.improving | 43 |
| abstract_inverted_index.including | 139 |
| abstract_inverted_index.inference | 48, 179 |
| abstract_inverted_index.overheads | 27 |
| abstract_inverted_index.training. | 29, 93 |
| abstract_inverted_index.training; | 162 |
| abstract_inverted_index.algorithm. | 77 |
| abstract_inverted_index.continuous | 5 |
| abstract_inverted_index.end-to-end | 121 |
| abstract_inverted_index.ultra-fast | 70 |
| abstract_inverted_index.BPLight-CNN | 111, 127, 195 |
| abstract_inverted_index.accelerator | 60, 87 |
| abstract_inverted_index.comparisons | 187 |
| abstract_inverted_index.computation | 26 |
| abstract_inverted_index.efficiency, | 156, 171 |
| abstract_inverted_index.improvement | 153, 168, 174 |
| abstract_inverted_index.performance | 90 |
| abstract_inverted_index.pre-trained | 37 |
| abstract_inverted_index.prediction. | 124 |
| abstract_inverted_index.resolution; | 193 |
| abstract_inverted_index.BPLight-CNN, | 103 |
| abstract_inverted_index.accelerator. | 110 |
| abstract_inverted_index.accelerators | 34 |
| abstract_inverted_index.architecture | 72, 119 |
| abstract_inverted_index.improvements | 198 |
| abstract_inverted_index.incorporates | 105 |
| abstract_inverted_index.Consequently, | 30 |
| abstract_inverted_index.approximately | 203 |
| abstract_inverted_index.computational | 155, 170 |
| abstract_inverted_index.convolutional | 100 |
| abstract_inverted_index.incorporating | 62 |
| abstract_inverted_index.backpropagation | 19, 86, 109 |
| abstract_inverted_index.memristor-based | 117 |
| abstract_inverted_index.photonics-based | 85, 108 |
| abstract_inverted_index.state-of-the-art | 183 |
| abstract_inverted_index.first-of-its-kind | 114 |
| abstract_inverted_index.state-of-the-art. | 210 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |