Brain Computer Interface: Deep Learning Approach to Predict Human Emotion Recognition Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/smc53654.2022.9945554
Brain-Computer Interfaces allow controlling machines through signals coming from Electroencephalography (EEG) analysis. Nowadays, there are several cheap electroencephalographs available on the market that guarantee good quality EEG signals. A very interesting approach in this area is related to detecting the emotional states of a user through the analysis of her EEG signal. In our study, we tried to detect the emotional polarity (Valence), the state of emotional excitement (Arousal), and the level of emotion control (Dominance). Through metric interpolation and Russell's circumplex model, it is possible to characterize and define the current emotional state of the user who wears the device. Our study presents a prototype of an EEG-based emotion recognizer that provides the user's emotional state exploitable as bio-feedback.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/smc53654.2022.9945554
- OA Status
- green
- Cited By
- 14
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309374825
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309374825Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/smc53654.2022.9945554Digital Object Identifier
- Title
-
Brain Computer Interface: Deep Learning Approach to Predict Human Emotion RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-09Full publication date if available
- Authors
-
Carmelo Ardito, Ilaria Bortone, Tommaso Colafiglio, Tommaso Di Noia, Eugenio Di Sciascio, Domenico Lofù, Fedelucio Narducci, Rodolfo Sardone, Paolo SorinoList of authors in order
- Landing page
-
https://doi.org/10.1109/smc53654.2022.9945554Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/11573/1699400Direct OA link when available
- Concepts
-
Electroencephalography, Computer science, Valence (chemistry), Arousal, Emotion recognition, Brain–computer interface, Artificial intelligence, Feature extraction, Emotional valence, Human–computer interaction, Speech recognition, Psychology, Cognition, Neuroscience, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 7, 2023: 3, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309374825 |
|---|---|
| doi | https://doi.org/10.1109/smc53654.2022.9945554 |
| ids.doi | https://doi.org/10.1109/smc53654.2022.9945554 |
| ids.openalex | https://openalex.org/W4309374825 |
| fwci | 3.23165705 |
| type | article |
| title | Brain Computer Interface: Deep Learning Approach to Predict Human Emotion Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2694 |
| biblio.first_page | 2689 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10667 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Emotion and Mood Recognition |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C522805319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.840323805809021 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[0].display_name | Electroencephalography |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7143268585205078 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C168900304 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6008113622665405 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q171407 |
| concepts[2].display_name | Valence (chemistry) |
| concepts[3].id | https://openalex.org/C36951298 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5876216888427734 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q379784 |
| concepts[3].display_name | Arousal |
| concepts[4].id | https://openalex.org/C2777438025 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5832386016845703 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1339090 |
| concepts[4].display_name | Emotion recognition |
| concepts[5].id | https://openalex.org/C173201364 |
| concepts[5].level | 3 |
| concepts[5].score | 0.521183431148529 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q897410 |
| concepts[5].display_name | Brain–computer interface |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.45626071095466614 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C52622490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42205002903938293 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[7].display_name | Feature extraction |
| concepts[8].id | https://openalex.org/C3020774634 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4138895869255066 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3113318 |
| concepts[8].display_name | Emotional valence |
| concepts[9].id | https://openalex.org/C107457646 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38497334718704224 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[9].display_name | Human–computer interaction |
| concepts[10].id | https://openalex.org/C28490314 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3811633586883545 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[10].display_name | Speech recognition |
| concepts[11].id | https://openalex.org/C15744967 |
| concepts[11].level | 0 |
| concepts[11].score | 0.19380348920822144 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[11].display_name | Psychology |
| concepts[12].id | https://openalex.org/C169900460 |
| concepts[12].level | 2 |
| concepts[12].score | 0.17895686626434326 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[12].display_name | Cognition |
| concepts[13].id | https://openalex.org/C169760540 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08334800601005554 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[13].display_name | Neuroscience |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/electroencephalography |
| keywords[0].score | 0.840323805809021 |
| keywords[0].display_name | Electroencephalography |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7143268585205078 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/valence |
| keywords[2].score | 0.6008113622665405 |
| keywords[2].display_name | Valence (chemistry) |
| keywords[3].id | https://openalex.org/keywords/arousal |
| keywords[3].score | 0.5876216888427734 |
| keywords[3].display_name | Arousal |
| keywords[4].id | https://openalex.org/keywords/emotion-recognition |
| keywords[4].score | 0.5832386016845703 |
| keywords[4].display_name | Emotion recognition |
| keywords[5].id | https://openalex.org/keywords/brain–computer-interface |
| keywords[5].score | 0.521183431148529 |
| keywords[5].display_name | Brain–computer interface |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.45626071095466614 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/feature-extraction |
| keywords[7].score | 0.42205002903938293 |
| keywords[7].display_name | Feature extraction |
| keywords[8].id | https://openalex.org/keywords/emotional-valence |
| keywords[8].score | 0.4138895869255066 |
| keywords[8].display_name | Emotional valence |
| keywords[9].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[9].score | 0.38497334718704224 |
| keywords[9].display_name | Human–computer interaction |
| keywords[10].id | https://openalex.org/keywords/speech-recognition |
| keywords[10].score | 0.3811633586883545 |
| keywords[10].display_name | Speech recognition |
| keywords[11].id | https://openalex.org/keywords/psychology |
| keywords[11].score | 0.19380348920822144 |
| keywords[11].display_name | Psychology |
| keywords[12].id | https://openalex.org/keywords/cognition |
| keywords[12].score | 0.17895686626434326 |
| keywords[12].display_name | Cognition |
| keywords[13].id | https://openalex.org/keywords/neuroscience |
| keywords[13].score | 0.08334800601005554 |
| keywords[13].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.1109/smc53654.2022.9945554 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363607746 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC) |
| locations[0].landing_page_url | https://doi.org/10.1109/smc53654.2022.9945554 |
| locations[1].id | pmh:oai:iris.uniroma1.it:11573/1699400 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4377196107 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | IRIS Research product catalog (Sapienza University of Rome) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://hdl.handle.net/11573/1699400 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5003495940 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8993-9855 |
| authorships[0].author.display_name | Carmelo Ardito |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210127672, https://openalex.org/I68618741 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I4210127672 |
| authorships[0].institutions[0].ror | https://ror.org/045s9b323 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210127672 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | Engineering (Italy) |
| authorships[0].institutions[1].id | https://openalex.org/I68618741 |
| authorships[0].institutions[1].ror | https://ror.org/03c44v465 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I68618741 |
| authorships[0].institutions[1].country_code | IT |
| authorships[0].institutions[1].display_name | Polytechnic University of Bari |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Carmelo Ardito |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[1].author.id | https://openalex.org/A5065276541 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4767-5334 |
| authorships[1].author.display_name | Ilaria Bortone |
| authorships[1].affiliations[0].raw_affiliation_string | Innovation, Marketing & Technology (IMT Lab), Exprivia SpA,Molfetta,Italy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ilaria Bortone |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Innovation, Marketing & Technology (IMT Lab), Exprivia SpA,Molfetta,Italy |
| authorships[2].author.id | https://openalex.org/A5025139824 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7184-310X |
| authorships[2].author.display_name | Tommaso Colafiglio |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210127672, https://openalex.org/I68618741 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I4210127672 |
| authorships[2].institutions[0].ror | https://ror.org/045s9b323 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210127672 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | Engineering (Italy) |
| authorships[2].institutions[1].id | https://openalex.org/I68618741 |
| authorships[2].institutions[1].ror | https://ror.org/03c44v465 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I68618741 |
| authorships[2].institutions[1].country_code | IT |
| authorships[2].institutions[1].display_name | Polytechnic University of Bari |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tommaso Colafiglio |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[3].author.id | https://openalex.org/A5034668928 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0939-5462 |
| authorships[3].author.display_name | Tommaso Di Noia |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210127672, https://openalex.org/I68618741 |
| authorships[3].affiliations[0].raw_affiliation_string | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I4210127672 |
| authorships[3].institutions[0].ror | https://ror.org/045s9b323 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210127672 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | Engineering (Italy) |
| authorships[3].institutions[1].id | https://openalex.org/I68618741 |
| authorships[3].institutions[1].ror | https://ror.org/03c44v465 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I68618741 |
| authorships[3].institutions[1].country_code | IT |
| authorships[3].institutions[1].display_name | Polytechnic University of Bari |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tommaso Di Noia |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[4].author.id | https://openalex.org/A5051474976 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5484-9945 |
| authorships[4].author.display_name | Eugenio Di Sciascio |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210127672, https://openalex.org/I68618741 |
| authorships[4].affiliations[0].raw_affiliation_string | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[4].institutions[0].id | https://openalex.org/I4210127672 |
| authorships[4].institutions[0].ror | https://ror.org/045s9b323 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210127672 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | Engineering (Italy) |
| authorships[4].institutions[1].id | https://openalex.org/I68618741 |
| authorships[4].institutions[1].ror | https://ror.org/03c44v465 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I68618741 |
| authorships[4].institutions[1].country_code | IT |
| authorships[4].institutions[1].display_name | Polytechnic University of Bari |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Eugenio Di Sciascio |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[5].author.id | https://openalex.org/A5040279038 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6413-9886 |
| authorships[5].author.display_name | Domenico Lofù |
| authorships[5].countries | IT |
| authorships[5].affiliations[0].raw_affiliation_string | Innovation, Marketing & Technology (IMT Lab), Exprivia SpA, Molfetta, Italy |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210127672, https://openalex.org/I68618741 |
| authorships[5].affiliations[1].raw_affiliation_string | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[5].institutions[0].id | https://openalex.org/I4210127672 |
| authorships[5].institutions[0].ror | https://ror.org/045s9b323 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210127672 |
| authorships[5].institutions[0].country_code | IT |
| authorships[5].institutions[0].display_name | Engineering (Italy) |
| authorships[5].institutions[1].id | https://openalex.org/I68618741 |
| authorships[5].institutions[1].ror | https://ror.org/03c44v465 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I68618741 |
| authorships[5].institutions[1].country_code | IT |
| authorships[5].institutions[1].display_name | Polytechnic University of Bari |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Domenico Lofu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy, Innovation, Marketing & Technology (IMT Lab), Exprivia SpA, Molfetta, Italy |
| authorships[6].author.id | https://openalex.org/A5076295894 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9255-3256 |
| authorships[6].author.display_name | Fedelucio Narducci |
| authorships[6].countries | IT |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210127672, https://openalex.org/I68618741 |
| authorships[6].affiliations[0].raw_affiliation_string | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[6].institutions[0].id | https://openalex.org/I4210127672 |
| authorships[6].institutions[0].ror | https://ror.org/045s9b323 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210127672 |
| authorships[6].institutions[0].country_code | IT |
| authorships[6].institutions[0].display_name | Engineering (Italy) |
| authorships[6].institutions[1].id | https://openalex.org/I68618741 |
| authorships[6].institutions[1].ror | https://ror.org/03c44v465 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I68618741 |
| authorships[6].institutions[1].country_code | IT |
| authorships[6].institutions[1].display_name | Polytechnic University of Bari |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Fedelucio Narducci |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[7].author.id | https://openalex.org/A5054000060 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1383-1850 |
| authorships[7].author.display_name | Rodolfo Sardone |
| authorships[7].affiliations[0].raw_affiliation_string | Data Sciences and Innovation N.I of Gastroenterology “S. de Bellis”,Castellana Grotte,Italy |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Rodolfo Sardone |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Data Sciences and Innovation N.I of Gastroenterology “S. de Bellis”,Castellana Grotte,Italy |
| authorships[8].author.id | https://openalex.org/A5002207094 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9081-2648 |
| authorships[8].author.display_name | Paolo Sorino |
| authorships[8].countries | IT |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210127672, https://openalex.org/I68618741 |
| authorships[8].affiliations[0].raw_affiliation_string | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| authorships[8].institutions[0].id | https://openalex.org/I4210127672 |
| authorships[8].institutions[0].ror | https://ror.org/045s9b323 |
| authorships[8].institutions[0].type | company |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210127672 |
| authorships[8].institutions[0].country_code | IT |
| authorships[8].institutions[0].display_name | Engineering (Italy) |
| authorships[8].institutions[1].id | https://openalex.org/I68618741 |
| authorships[8].institutions[1].ror | https://ror.org/03c44v465 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I68618741 |
| authorships[8].institutions[1].country_code | IT |
| authorships[8].institutions[1].display_name | Polytechnic University of Bari |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Paolo Sorino |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hdl.handle.net/11573/1699400 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Brain Computer Interface: Deep Learning Approach to Predict Human Emotion Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2117903888, https://openalex.org/W4298287205, https://openalex.org/W2067583143, https://openalex.org/W2809182427, https://openalex.org/W2922882122, https://openalex.org/W2954673766, https://openalex.org/W1965328984, https://openalex.org/W2018517363, https://openalex.org/W3167038969, https://openalex.org/W4309374825 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:iris.uniroma1.it:11573/1699400 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196107 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IRIS Research product catalog (Sapienza University of Rome) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/conferenceObject |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://hdl.handle.net/11573/1699400 |
| primary_location.id | doi:10.1109/smc53654.2022.9945554 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363607746 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC) |
| primary_location.landing_page_url | https://doi.org/10.1109/smc53654.2022.9945554 |
| publication_date | 2022-10-09 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2227023164, https://openalex.org/W6631190155, https://openalex.org/W2167557160, https://openalex.org/W6784451889, https://openalex.org/W2599124244, https://openalex.org/W6675354045, https://openalex.org/W2028058536, https://openalex.org/W6741357806, https://openalex.org/W2092752690, https://openalex.org/W1976163549, https://openalex.org/W2513975684, https://openalex.org/W2963355311, https://openalex.org/W2913246999, https://openalex.org/W3047423662, https://openalex.org/W2980495289, https://openalex.org/W6782269963, https://openalex.org/W4226548933, https://openalex.org/W2789802223, https://openalex.org/W3122665304, https://openalex.org/W1977500242, https://openalex.org/W3216752614, https://openalex.org/W6634814030, https://openalex.org/W2002055708, https://openalex.org/W3204237478, https://openalex.org/W2162799770, https://openalex.org/W3108956749, https://openalex.org/W3044186523, https://openalex.org/W3037044629, https://openalex.org/W2097117768, https://openalex.org/W6750843368, https://openalex.org/W2194775991, https://openalex.org/W6769831151, https://openalex.org/W3125708477, https://openalex.org/W2941063500, https://openalex.org/W2402244642, https://openalex.org/W2739093060, https://openalex.org/W1522301498, https://openalex.org/W1582435952, https://openalex.org/W3093400026, https://openalex.org/W2101234009, https://openalex.org/W3124412656, https://openalex.org/W3118257075, https://openalex.org/W4403242122, https://openalex.org/W2479554553 |
| referenced_works_count | 44 |
| abstract_inverted_index.A | 28 |
| abstract_inverted_index.a | 43, 104 |
| abstract_inverted_index.In | 52 |
| abstract_inverted_index.an | 107 |
| abstract_inverted_index.as | 118 |
| abstract_inverted_index.in | 32 |
| abstract_inverted_index.is | 35, 84 |
| abstract_inverted_index.it | 83 |
| abstract_inverted_index.of | 42, 48, 65, 72, 94, 106 |
| abstract_inverted_index.on | 19 |
| abstract_inverted_index.to | 37, 57, 86 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.EEG | 26, 50 |
| abstract_inverted_index.Our | 101 |
| abstract_inverted_index.and | 69, 79, 88 |
| abstract_inverted_index.are | 14 |
| abstract_inverted_index.her | 49 |
| abstract_inverted_index.our | 53 |
| abstract_inverted_index.the | 20, 39, 46, 59, 63, 70, 90, 95, 99, 113 |
| abstract_inverted_index.who | 97 |
| abstract_inverted_index.area | 34 |
| abstract_inverted_index.from | 8 |
| abstract_inverted_index.good | 24 |
| abstract_inverted_index.that | 22, 111 |
| abstract_inverted_index.this | 33 |
| abstract_inverted_index.user | 44, 96 |
| abstract_inverted_index.very | 29 |
| abstract_inverted_index.(EEG) | 10 |
| abstract_inverted_index.allow | 2 |
| abstract_inverted_index.cheap | 16 |
| abstract_inverted_index.level | 71 |
| abstract_inverted_index.state | 64, 93, 116 |
| abstract_inverted_index.study | 102 |
| abstract_inverted_index.there | 13 |
| abstract_inverted_index.tried | 56 |
| abstract_inverted_index.wears | 98 |
| abstract_inverted_index.coming | 7 |
| abstract_inverted_index.define | 89 |
| abstract_inverted_index.detect | 58 |
| abstract_inverted_index.market | 21 |
| abstract_inverted_index.metric | 77 |
| abstract_inverted_index.model, | 82 |
| abstract_inverted_index.states | 41 |
| abstract_inverted_index.study, | 54 |
| abstract_inverted_index.user's | 114 |
| abstract_inverted_index.Through | 76 |
| abstract_inverted_index.control | 74 |
| abstract_inverted_index.current | 91 |
| abstract_inverted_index.device. | 100 |
| abstract_inverted_index.emotion | 73, 109 |
| abstract_inverted_index.quality | 25 |
| abstract_inverted_index.related | 36 |
| abstract_inverted_index.several | 15 |
| abstract_inverted_index.signal. | 51 |
| abstract_inverted_index.signals | 6 |
| abstract_inverted_index.through | 5, 45 |
| abstract_inverted_index.analysis | 47 |
| abstract_inverted_index.approach | 31 |
| abstract_inverted_index.machines | 4 |
| abstract_inverted_index.polarity | 61 |
| abstract_inverted_index.possible | 85 |
| abstract_inverted_index.presents | 103 |
| abstract_inverted_index.provides | 112 |
| abstract_inverted_index.signals. | 27 |
| abstract_inverted_index.EEG-based | 108 |
| abstract_inverted_index.Nowadays, | 12 |
| abstract_inverted_index.Russell's | 80 |
| abstract_inverted_index.analysis. | 11 |
| abstract_inverted_index.available | 18 |
| abstract_inverted_index.detecting | 38 |
| abstract_inverted_index.emotional | 40, 60, 66, 92, 115 |
| abstract_inverted_index.guarantee | 23 |
| abstract_inverted_index.prototype | 105 |
| abstract_inverted_index.(Arousal), | 68 |
| abstract_inverted_index.(Valence), | 62 |
| abstract_inverted_index.Interfaces | 1 |
| abstract_inverted_index.circumplex | 81 |
| abstract_inverted_index.excitement | 67 |
| abstract_inverted_index.recognizer | 110 |
| abstract_inverted_index.controlling | 3 |
| abstract_inverted_index.exploitable | 117 |
| abstract_inverted_index.interesting | 30 |
| abstract_inverted_index.(Dominance). | 75 |
| abstract_inverted_index.characterize | 87 |
| abstract_inverted_index.bio-feedback. | 119 |
| abstract_inverted_index.interpolation | 78 |
| abstract_inverted_index.Brain-Computer | 0 |
| abstract_inverted_index.Electroencephalography | 9 |
| abstract_inverted_index.electroencephalographs | 17 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.93407887 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |