Brain tumor detection using CNN, AlexNet & GoogLeNet ensembling learning approaches Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3934/era.2023146
The detection of neurological disorders and diseases is aided by automatically identifying brain tumors from brain magnetic resonance imaging (MRI) images. A brain tumor is a potentially fatal disease that affects humans. Convolutional neural networks (CNNs) are the most common and widely used deep learning techniques for brain tumor analysis and classification. In this study, we proposed a deep CNN model for automatically detecting brain tumor cells in MRI brain images. First, we preprocess the 2D brain image MRI image to generate convolutional features. The CNN network is trained on the training dataset using the GoogleNet and AlexNet architecture, and the data model's performance is evaluated on the test data set. The model's performance is measured in terms of accuracy, sensitivity, specificity, and AUC. The algorithm performance matrices of both AlexNet and GoogLeNet are compared, the accuracy of AlexNet is 98.95, GoogLeNet is 99.45 sensitivity of AlexNet is 98.4, and GoogLeNet is 99.75, so from these values, we can infer that the GooGleNet is highly accurate and parameters that GoogLeNet consumes is significantly less; that is, the depth of AlexNet is 8, and it takes 60 million parameters, and the image input size is 227 × 227. Because of its high specificity and speed, the proposed CNN model can be a competent alternative support tool for radiologists in clinical diagnosis.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3934/era.2023146
- OA Status
- gold
- Cited By
- 23
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4327653197
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4327653197Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3934/era.2023146Digital Object Identifier
- Title
-
Brain tumor detection using CNN, AlexNet & GoogLeNet ensembling learning approachesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Chetan Swarup, Kamred Udham Singh, Ankit Kumar, Saroj Kumar Pandey, Neeraj Varshney, Teekam SinghList of authors in order
- Landing page
-
https://doi.org/10.3934/era.2023146Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3934/era.2023146Direct OA link when available
- Concepts
-
Convolutional neural network, Artificial intelligence, Computer science, Pattern recognition (psychology), Deep learning, Data set, Test set, Set (abstract data type), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
23Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 15, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4327653197 |
|---|---|
| doi | https://doi.org/10.3934/era.2023146 |
| ids.doi | https://doi.org/10.3934/era.2023146 |
| ids.openalex | https://openalex.org/W4327653197 |
| fwci | 5.11233372 |
| type | article |
| title | Brain tumor detection using CNN, AlexNet & GoogLeNet ensembling learning approaches |
| biblio.issue | 5 |
| biblio.volume | 31 |
| biblio.last_page | 2924 |
| biblio.first_page | 2900 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9922000169754028 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T14510 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9882000088691711 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Medical Imaging and Analysis |
| is_xpac | False |
| apc_list.value | 1000 |
| apc_list.currency | USD |
| apc_list.value_usd | 1000 |
| apc_paid.value | 1000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1000 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8894320130348206 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7254965305328369 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6744226813316345 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6251040101051331 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5278542041778564 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C58489278 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5019321441650391 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[5].display_name | Data set |
| concepts[6].id | https://openalex.org/C169903167 |
| concepts[6].level | 2 |
| concepts[6].score | 0.421270489692688 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[6].display_name | Test set |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4132738709449768 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C199360897 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[8].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.8894320130348206 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7254965305328369 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6744226813316345 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6251040101051331 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.5278542041778564 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/data-set |
| keywords[5].score | 0.5019321441650391 |
| keywords[5].display_name | Data set |
| keywords[6].id | https://openalex.org/keywords/test-set |
| keywords[6].score | 0.421270489692688 |
| keywords[6].display_name | Test set |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.4132738709449768 |
| keywords[7].display_name | Set (abstract data type) |
| language | en |
| locations[0].id | doi:10.3934/era.2023146 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210240239 |
| locations[0].source.issn | 2688-1594 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2688-1594 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Electronic Research Archive |
| locations[0].source.host_organization | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_name | American Institute of Mathematical Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronic Research Archive |
| locations[0].landing_page_url | https://doi.org/10.3934/era.2023146 |
| locations[1].id | pmh:oai:doaj.org/article:494f4af9804c439c9e22df2e19029918 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Electronic Research Archive, Vol 31, Iss 5, Pp 2900-2924 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/494f4af9804c439c9e22df2e19029918 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5029027974 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8637-3945 |
| authorships[0].author.display_name | Chetan Swarup |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I120238654 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh-Male Campus, Riyadh 11673, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I120238654 |
| authorships[0].institutions[0].ror | https://ror.org/05ndh7v49 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I120238654 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | Saudi Electronic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chetan Swarup |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh-Male Campus, Riyadh 11673, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5003704293 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7201-6381 |
| authorships[1].author.display_name | Kamred Udham Singh |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I60054993 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computing, Graphic Hill Era University, Dehradun-248002, India |
| authorships[1].institutions[0].id | https://openalex.org/I60054993 |
| authorships[1].institutions[0].ror | https://ror.org/03wqgqd89 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I60054993 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Graphic Era University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kamred Udham Singh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computing, Graphic Hill Era University, Dehradun-248002, India |
| authorships[2].author.id | https://openalex.org/A5048603009 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7945-4616 |
| authorships[2].author.display_name | Ankit Kumar |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82571370 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Engineering & Applications, GLA University, Mathura, India |
| authorships[2].institutions[0].id | https://openalex.org/I82571370 |
| authorships[2].institutions[0].ror | https://ror.org/05fnxgv12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82571370 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | GLA University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ankit Kumar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Engineering & Applications, GLA University, Mathura, India |
| authorships[3].author.id | https://openalex.org/A5022653286 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2020-2534 |
| authorships[3].author.display_name | Saroj Kumar Pandey |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82571370 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Engineering & Applications, GLA University, Mathura, India |
| authorships[3].institutions[0].id | https://openalex.org/I82571370 |
| authorships[3].institutions[0].ror | https://ror.org/05fnxgv12 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82571370 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | GLA University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Saroj Kumar Pandey |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Engineering & Applications, GLA University, Mathura, India |
| authorships[4].author.id | https://openalex.org/A5080803147 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6537-7891 |
| authorships[4].author.display_name | Neeraj Varshney |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I82571370 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Engineering & Applications, GLA University, Mathura, India |
| authorships[4].institutions[0].id | https://openalex.org/I82571370 |
| authorships[4].institutions[0].ror | https://ror.org/05fnxgv12 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I82571370 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | GLA University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Neeraj varshney |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Engineering & Applications, GLA University, Mathura, India |
| authorships[5].author.id | https://openalex.org/A5063105242 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8050-5639 |
| authorships[5].author.display_name | Teekam Singh |
| authorships[5].countries | IN, SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I120238654 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh-Male Campus, Riyadh 11673, Saudi Arabia |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I5847235 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Mathematics, University of Petroleum & Energy Studies, Dehradun-248002, India |
| authorships[5].affiliations[2].institution_ids | https://openalex.org/I82571370 |
| authorships[5].affiliations[2].raw_affiliation_string | Department of Computer Engineering & Applications, GLA University, Mathura, India |
| authorships[5].affiliations[3].institution_ids | https://openalex.org/I60054993 |
| authorships[5].affiliations[3].raw_affiliation_string | School of Computing, Graphic Hill Era University, Dehradun-248002, India |
| authorships[5].institutions[0].id | https://openalex.org/I82571370 |
| authorships[5].institutions[0].ror | https://ror.org/05fnxgv12 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I82571370 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | GLA University |
| authorships[5].institutions[1].id | https://openalex.org/I60054993 |
| authorships[5].institutions[1].ror | https://ror.org/03wqgqd89 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I60054993 |
| authorships[5].institutions[1].country_code | IN |
| authorships[5].institutions[1].display_name | Graphic Era University |
| authorships[5].institutions[2].id | https://openalex.org/I5847235 |
| authorships[5].institutions[2].ror | https://ror.org/04q2jes40 |
| authorships[5].institutions[2].type | education |
| authorships[5].institutions[2].lineage | https://openalex.org/I5847235 |
| authorships[5].institutions[2].country_code | IN |
| authorships[5].institutions[2].display_name | University of Petroleum and Energy Studies |
| authorships[5].institutions[3].id | https://openalex.org/I120238654 |
| authorships[5].institutions[3].ror | https://ror.org/05ndh7v49 |
| authorships[5].institutions[3].type | education |
| authorships[5].institutions[3].lineage | https://openalex.org/I120238654 |
| authorships[5].institutions[3].country_code | SA |
| authorships[5].institutions[3].display_name | Saudi Electronic University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Teekam Singh |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh-Male Campus, Riyadh 11673, Saudi Arabia, Department of Computer Engineering & Applications, GLA University, Mathura, India, Department of Mathematics, University of Petroleum & Energy Studies, Dehradun-248002, India, School of Computing, Graphic Hill Era University, Dehradun-248002, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3934/era.2023146 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Brain tumor detection using CNN, AlexNet & GoogLeNet ensembling learning approaches |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W3167935049, https://openalex.org/W3029198973, https://openalex.org/W2027108423, https://openalex.org/W3099765033, https://openalex.org/W3185156046, https://openalex.org/W2997155179, https://openalex.org/W2154177135 |
| cited_by_count | 23 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 15 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3934/era.2023146 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210240239 |
| best_oa_location.source.issn | 2688-1594 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2688-1594 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Electronic Research Archive |
| best_oa_location.source.host_organization | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_name | American Institute of Mathematical Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronic Research Archive |
| best_oa_location.landing_page_url | https://doi.org/10.3934/era.2023146 |
| primary_location.id | doi:10.3934/era.2023146 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210240239 |
| primary_location.source.issn | 2688-1594 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2688-1594 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Electronic Research Archive |
| primary_location.source.host_organization | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_name | American Institute of Mathematical Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronic Research Archive |
| primary_location.landing_page_url | https://doi.org/10.3934/era.2023146 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3210940445, https://openalex.org/W3123264927, https://openalex.org/W3118850450, https://openalex.org/W3167904946, https://openalex.org/W3120491988, https://openalex.org/W3134637941, https://openalex.org/W3096087094, https://openalex.org/W4212940446, https://openalex.org/W3191749623, https://openalex.org/W3210132172, https://openalex.org/W3217110323, https://openalex.org/W3204426737, https://openalex.org/W3119022030, https://openalex.org/W3156975676, https://openalex.org/W3121092655, https://openalex.org/W3173182123, https://openalex.org/W4281572218, https://openalex.org/W3104455982, https://openalex.org/W3121730411, https://openalex.org/W3120503521, https://openalex.org/W3125205865, https://openalex.org/W3118656209, https://openalex.org/W3126999824, https://openalex.org/W3118579652, https://openalex.org/W3118399063, https://openalex.org/W4210753357, https://openalex.org/W3162670672, https://openalex.org/W3167747937, https://openalex.org/W3205086685, https://openalex.org/W3126811590, https://openalex.org/W3162239341, https://openalex.org/W3165254547, https://openalex.org/W3044256341, https://openalex.org/W4312100216, https://openalex.org/W4282972689, https://openalex.org/W3011430986, https://openalex.org/W4312223838, https://openalex.org/W4318823721, https://openalex.org/W4310030439, https://openalex.org/W4318577478, https://openalex.org/W3135467317 |
| referenced_works_count | 41 |
| abstract_inverted_index.A | 22 |
| abstract_inverted_index.a | 26, 58, 211 |
| abstract_inverted_index.2D | 76 |
| abstract_inverted_index.60 | 186 |
| abstract_inverted_index.8, | 182 |
| abstract_inverted_index.In | 53 |
| abstract_inverted_index.be | 210 |
| abstract_inverted_index.by | 10 |
| abstract_inverted_index.in | 68, 117, 218 |
| abstract_inverted_index.is | 8, 25, 88, 105, 115, 140, 143, 148, 152, 164, 172, 181, 194 |
| abstract_inverted_index.it | 184 |
| abstract_inverted_index.of | 3, 119, 129, 138, 146, 179, 199 |
| abstract_inverted_index.on | 90, 107 |
| abstract_inverted_index.so | 154 |
| abstract_inverted_index.to | 81 |
| abstract_inverted_index.we | 56, 73, 158 |
| abstract_inverted_index.× | 196 |
| abstract_inverted_index.227 | 195 |
| abstract_inverted_index.CNN | 60, 86, 207 |
| abstract_inverted_index.MRI | 69, 79 |
| abstract_inverted_index.The | 85, 112, 125 |
| abstract_inverted_index.and | 6, 41, 51, 97, 100, 123, 132, 150, 167, 183, 189, 203 |
| abstract_inverted_index.are | 37, 134 |
| abstract_inverted_index.can | 159, 209 |
| abstract_inverted_index.for | 47, 62, 216 |
| abstract_inverted_index.is, | 176 |
| abstract_inverted_index.its | 200 |
| abstract_inverted_index.the | 38, 75, 91, 95, 101, 108, 136, 162, 177, 190, 205 |
| abstract_inverted_index.227. | 197 |
| abstract_inverted_index.AUC. | 124 |
| abstract_inverted_index.both | 130 |
| abstract_inverted_index.data | 102, 110 |
| abstract_inverted_index.deep | 44, 59 |
| abstract_inverted_index.from | 15, 155 |
| abstract_inverted_index.high | 201 |
| abstract_inverted_index.most | 39 |
| abstract_inverted_index.set. | 111 |
| abstract_inverted_index.size | 193 |
| abstract_inverted_index.test | 109 |
| abstract_inverted_index.that | 30, 161, 169, 175 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.tool | 215 |
| abstract_inverted_index.used | 43 |
| abstract_inverted_index.(MRI) | 20 |
| abstract_inverted_index.98.4, | 149 |
| abstract_inverted_index.99.45 | 144 |
| abstract_inverted_index.aided | 9 |
| abstract_inverted_index.brain | 13, 16, 23, 48, 65, 70, 77 |
| abstract_inverted_index.cells | 67 |
| abstract_inverted_index.depth | 178 |
| abstract_inverted_index.fatal | 28 |
| abstract_inverted_index.image | 78, 80, 191 |
| abstract_inverted_index.infer | 160 |
| abstract_inverted_index.input | 192 |
| abstract_inverted_index.less; | 174 |
| abstract_inverted_index.model | 61, 208 |
| abstract_inverted_index.takes | 185 |
| abstract_inverted_index.terms | 118 |
| abstract_inverted_index.these | 156 |
| abstract_inverted_index.tumor | 24, 49, 66 |
| abstract_inverted_index.using | 94 |
| abstract_inverted_index.(CNNs) | 36 |
| abstract_inverted_index.98.95, | 141 |
| abstract_inverted_index.99.75, | 153 |
| abstract_inverted_index.First, | 72 |
| abstract_inverted_index.common | 40 |
| abstract_inverted_index.highly | 165 |
| abstract_inverted_index.neural | 34 |
| abstract_inverted_index.speed, | 204 |
| abstract_inverted_index.study, | 55 |
| abstract_inverted_index.tumors | 14 |
| abstract_inverted_index.widely | 42 |
| abstract_inverted_index.AlexNet | 98, 131, 139, 147, 180 |
| abstract_inverted_index.Because | 198 |
| abstract_inverted_index.affects | 31 |
| abstract_inverted_index.dataset | 93 |
| abstract_inverted_index.disease | 29 |
| abstract_inverted_index.humans. | 32 |
| abstract_inverted_index.images. | 21, 71 |
| abstract_inverted_index.imaging | 19 |
| abstract_inverted_index.million | 187 |
| abstract_inverted_index.model's | 103, 113 |
| abstract_inverted_index.network | 87 |
| abstract_inverted_index.support | 214 |
| abstract_inverted_index.trained | 89 |
| abstract_inverted_index.values, | 157 |
| abstract_inverted_index.accuracy | 137 |
| abstract_inverted_index.accurate | 166 |
| abstract_inverted_index.analysis | 50 |
| abstract_inverted_index.clinical | 219 |
| abstract_inverted_index.consumes | 171 |
| abstract_inverted_index.diseases | 7 |
| abstract_inverted_index.generate | 82 |
| abstract_inverted_index.learning | 45 |
| abstract_inverted_index.magnetic | 17 |
| abstract_inverted_index.matrices | 128 |
| abstract_inverted_index.measured | 116 |
| abstract_inverted_index.networks | 35 |
| abstract_inverted_index.proposed | 57, 206 |
| abstract_inverted_index.training | 92 |
| abstract_inverted_index.GooGleNet | 163 |
| abstract_inverted_index.GoogLeNet | 133, 142, 151, 170 |
| abstract_inverted_index.GoogleNet | 96 |
| abstract_inverted_index.accuracy, | 120 |
| abstract_inverted_index.algorithm | 126 |
| abstract_inverted_index.compared, | 135 |
| abstract_inverted_index.competent | 212 |
| abstract_inverted_index.detecting | 64 |
| abstract_inverted_index.detection | 2 |
| abstract_inverted_index.disorders | 5 |
| abstract_inverted_index.evaluated | 106 |
| abstract_inverted_index.features. | 84 |
| abstract_inverted_index.resonance | 18 |
| abstract_inverted_index.parameters | 168 |
| abstract_inverted_index.preprocess | 74 |
| abstract_inverted_index.techniques | 46 |
| abstract_inverted_index.alternative | 213 |
| abstract_inverted_index.identifying | 12 |
| abstract_inverted_index.parameters, | 188 |
| abstract_inverted_index.performance | 104, 114, 127 |
| abstract_inverted_index.potentially | 27 |
| abstract_inverted_index.sensitivity | 145 |
| abstract_inverted_index.specificity | 202 |
| abstract_inverted_index.<p>The | 1 |
| abstract_inverted_index.neurological | 4 |
| abstract_inverted_index.radiologists | 217 |
| abstract_inverted_index.sensitivity, | 121 |
| abstract_inverted_index.specificity, | 122 |
| abstract_inverted_index.Convolutional | 33 |
| abstract_inverted_index.architecture, | 99 |
| abstract_inverted_index.automatically | 11, 63 |
| abstract_inverted_index.convolutional | 83 |
| abstract_inverted_index.significantly | 173 |
| abstract_inverted_index.classification. | 52 |
| abstract_inverted_index.<abstract> | 0 |
| abstract_inverted_index.</abstract> | 221 |
| abstract_inverted_index.diagnosis.</p> | 220 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5063105242 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I120238654, https://openalex.org/I5847235, https://openalex.org/I60054993, https://openalex.org/I82571370 |
| citation_normalized_percentile.value | 0.92994771 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |