BrainCLIP: Brain Representation via CLIP for Generic Natural Visual Stimulus Decoding Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/tmi.2025.3537287
Functional Magnetic Resonance Imaging (fMRI) presents challenges due to limited paired samples and low signal-to-noise ratios, particularly in tasks involving reconstructing natural images or decoding their semantic content. To address these challenges, we introduce BrainCLIP, an innovative fMRI-based brain decoding model. BrainCLIP leverages Contrastive Language-Image Pre-training's (CLIP) cross-modal generalization abilities to bridge brain activity, images, and text for the first time. Our experiments demonstrate CLIP's effectiveness in diverse brain decoding tasks, including zero-shot visual category decoding, fMRI-image/text alignment, and fMRI-to-image generation. The core objective of BrainCLIP is to train a mapping network that translates fMRI patterns into a unified CLIP embedding space, achieved through visual and textual supervision integration. Our experiments highlight that this approach significantly enhances performance in tasks such as fMRI-text alignment and fMRI-based image generation. Notably, BrainCLIP surpasses BraVL, a recent multi-modal method, in zero-shot visual category decoding. Moreover, BrainCLIP demonstrates strong capability in reconstructing visual stimuli with high semantic fidelity, competing favorably with state-of-the-art methods in capturing high-level semantic features during fMRI-based natural image reconstruction.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tmi.2025.3537287
- OA Status
- hybrid
- Cited By
- 7
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407025656
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407025656Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tmi.2025.3537287Digital Object Identifier
- Title
-
BrainCLIP: Brain Representation via CLIP for Generic Natural Visual Stimulus DecodingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-31Full publication date if available
- Authors
-
Yongqiang Ma, Yulong Liu, Liangjun Chen, Guibo Zhu, Badong Chen, Nanning ZhengList of authors in order
- Landing page
-
https://doi.org/10.1109/tmi.2025.3537287Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/tmi.2025.3537287Direct OA link when available
- Concepts
-
Decoding methods, Computer science, Stimulus (psychology), Artificial intelligence, Computer vision, Pattern recognition (psychology), Psychology, Cognitive psychology, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407025656 |
|---|---|
| doi | https://doi.org/10.1109/tmi.2025.3537287 |
| ids.doi | https://doi.org/10.1109/tmi.2025.3537287 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40031248 |
| ids.openalex | https://openalex.org/W4407025656 |
| fwci | 33.73821602 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D008279 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Magnetic Resonance Imaging |
| mesh[2].qualifier_ui | Q000000981 |
| mesh[2].descriptor_ui | D001921 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | diagnostic imaging |
| mesh[2].descriptor_name | Brain |
| mesh[3].qualifier_ui | Q000502 |
| mesh[3].descriptor_ui | D001921 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | physiology |
| mesh[3].descriptor_name | Brain |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D007091 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Image Processing, Computer-Assisted |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D001931 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Brain Mapping |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D010775 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Photic Stimulation |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000465 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Algorithms |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000328 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Adult |
| type | article |
| title | BrainCLIP: Brain Representation via CLIP for Generic Natural Visual Stimulus Decoding |
| awards[0].id | https://openalex.org/G7025311388 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | No. 62088102 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 10 |
| biblio.volume | 44 |
| biblio.last_page | 3972 |
| biblio.first_page | 3962 |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8835999965667725 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T12946 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.8712000250816345 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Fractal and DNA sequence analysis |
| topics[2].id | https://openalex.org/T10429 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.7559000253677368 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | EEG and Brain-Computer Interfaces |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C57273362 |
| concepts[0].level | 2 |
| concepts[0].score | 0.762321949005127 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[0].display_name | Decoding methods |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6252872943878174 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2779918689 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5669366121292114 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3771842 |
| concepts[2].display_name | Stimulus (psychology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5018072128295898 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.49067509174346924 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.33498045802116394 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.17567697167396545 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C180747234 |
| concepts[7].level | 1 |
| concepts[7].score | 0.16364842653274536 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[7].display_name | Cognitive psychology |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15739834308624268 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/decoding-methods |
| keywords[0].score | 0.762321949005127 |
| keywords[0].display_name | Decoding methods |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6252872943878174 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/stimulus |
| keywords[2].score | 0.5669366121292114 |
| keywords[2].display_name | Stimulus (psychology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5018072128295898 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.49067509174346924 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.33498045802116394 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.17567697167396545 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[7].score | 0.16364842653274536 |
| keywords[7].display_name | Cognitive psychology |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.15739834308624268 |
| keywords[8].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1109/tmi.2025.3537287 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S58069681 |
| locations[0].source.issn | 0278-0062, 1558-254X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0278-0062 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Medical Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Medical Imaging |
| locations[0].landing_page_url | https://doi.org/10.1109/tmi.2025.3537287 |
| locations[1].id | pmid:40031248 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on medical imaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40031248 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5101425592 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6063-5601 |
| authorships[0].author.display_name | Yongqiang Ma |
| authorships[0].affiliations[0].raw_affiliation_string | National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yongqiang Ma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
| authorships[1].author.id | https://openalex.org/A5100431014 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9840-1512 |
| authorships[1].author.display_name | Yulong Liu |
| authorships[1].affiliations[0].raw_affiliation_string | National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yulong Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
| authorships[2].author.id | https://openalex.org/A5059675437 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6678-7617 |
| authorships[2].author.display_name | Liangjun Chen |
| authorships[2].affiliations[0].raw_affiliation_string | National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liangjun Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
| authorships[3].author.id | https://openalex.org/A5029271867 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8293-3952 |
| authorships[3].author.display_name | Guibo Zhu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210112150 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210112150 |
| authorships[3].institutions[1].ror | https://ror.org/022c3hy66 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210112150 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Institute of Automation |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guibo Zhu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China |
| authorships[4].author.id | https://openalex.org/A5077852542 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1710-3818 |
| authorships[4].author.display_name | Badong Chen |
| authorships[4].affiliations[0].raw_affiliation_string | National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Badong Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
| authorships[5].author.id | https://openalex.org/A5047405956 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1608-8257 |
| authorships[5].author.display_name | Nanning Zheng |
| authorships[5].affiliations[0].raw_affiliation_string | National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Nanning Zheng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/tmi.2025.3537287 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | BrainCLIP: Brain Representation via CLIP for Generic Natural Visual Stimulus Decoding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8835999965667725 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/tmi.2025.3537287 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S58069681 |
| best_oa_location.source.issn | 0278-0062, 1558-254X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0278-0062 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Transactions on Medical Imaging |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Medical Imaging |
| best_oa_location.landing_page_url | https://doi.org/10.1109/tmi.2025.3537287 |
| primary_location.id | doi:10.1109/tmi.2025.3537287 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S58069681 |
| primary_location.source.issn | 0278-0062, 1558-254X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0278-0062 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Medical Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Medical Imaging |
| primary_location.landing_page_url | https://doi.org/10.1109/tmi.2025.3537287 |
| publication_date | 2025-01-31 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2167034998, https://openalex.org/W2020604100, https://openalex.org/W2089632738, https://openalex.org/W4231623949, https://openalex.org/W2106664807, https://openalex.org/W2041716195, https://openalex.org/W2036084760, https://openalex.org/W2963341661, https://openalex.org/W4361855028, https://openalex.org/W2951287344, https://openalex.org/W2949290395, https://openalex.org/W2963065355, https://openalex.org/W3120395234, https://openalex.org/W3004371658, https://openalex.org/W4309408768, https://openalex.org/W4386881720, https://openalex.org/W4387969592, https://openalex.org/W4312740349, https://openalex.org/W4312938727, https://openalex.org/W3092301876, https://openalex.org/W4294170691, https://openalex.org/W4312915985, https://openalex.org/W2112180451, https://openalex.org/W2126810579, https://openalex.org/W2950176763, https://openalex.org/W2949869422, https://openalex.org/W2025668003, https://openalex.org/W3197409584, https://openalex.org/W4285261524, https://openalex.org/W2108598243, https://openalex.org/W4200613736, https://openalex.org/W1861492603, https://openalex.org/W3198377975, https://openalex.org/W2963283377, https://openalex.org/W4386075821 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 89, 97, 132 |
| abstract_inverted_index.To | 28 |
| abstract_inverted_index.an | 35 |
| abstract_inverted_index.as | 121 |
| abstract_inverted_index.in | 17, 66, 118, 136, 146, 159 |
| abstract_inverted_index.is | 86 |
| abstract_inverted_index.of | 84 |
| abstract_inverted_index.or | 23 |
| abstract_inverted_index.to | 8, 50, 87 |
| abstract_inverted_index.we | 32 |
| abstract_inverted_index.Our | 61, 109 |
| abstract_inverted_index.The | 81 |
| abstract_inverted_index.and | 12, 55, 78, 105, 124 |
| abstract_inverted_index.due | 7 |
| abstract_inverted_index.for | 57 |
| abstract_inverted_index.low | 13 |
| abstract_inverted_index.the | 58 |
| abstract_inverted_index.CLIP | 99 |
| abstract_inverted_index.core | 82 |
| abstract_inverted_index.fMRI | 94 |
| abstract_inverted_index.high | 151 |
| abstract_inverted_index.into | 96 |
| abstract_inverted_index.such | 120 |
| abstract_inverted_index.text | 56 |
| abstract_inverted_index.that | 92, 112 |
| abstract_inverted_index.this | 113 |
| abstract_inverted_index.with | 150, 156 |
| abstract_inverted_index.brain | 38, 52, 68 |
| abstract_inverted_index.first | 59 |
| abstract_inverted_index.image | 126, 167 |
| abstract_inverted_index.tasks | 18, 119 |
| abstract_inverted_index.their | 25 |
| abstract_inverted_index.these | 30 |
| abstract_inverted_index.time. | 60 |
| abstract_inverted_index.train | 88 |
| abstract_inverted_index.(CLIP) | 46 |
| abstract_inverted_index.(fMRI) | 4 |
| abstract_inverted_index.BraVL, | 131 |
| abstract_inverted_index.CLIP's | 64 |
| abstract_inverted_index.bridge | 51 |
| abstract_inverted_index.during | 164 |
| abstract_inverted_index.images | 22 |
| abstract_inverted_index.model. | 40 |
| abstract_inverted_index.paired | 10 |
| abstract_inverted_index.recent | 133 |
| abstract_inverted_index.space, | 101 |
| abstract_inverted_index.strong | 144 |
| abstract_inverted_index.tasks, | 70 |
| abstract_inverted_index.visual | 73, 104, 138, 148 |
| abstract_inverted_index.Imaging | 3 |
| abstract_inverted_index.address | 29 |
| abstract_inverted_index.diverse | 67 |
| abstract_inverted_index.images, | 54 |
| abstract_inverted_index.limited | 9 |
| abstract_inverted_index.mapping | 90 |
| abstract_inverted_index.method, | 135 |
| abstract_inverted_index.methods | 158 |
| abstract_inverted_index.natural | 21, 166 |
| abstract_inverted_index.network | 91 |
| abstract_inverted_index.ratios, | 15 |
| abstract_inverted_index.samples | 11 |
| abstract_inverted_index.stimuli | 149 |
| abstract_inverted_index.textual | 106 |
| abstract_inverted_index.through | 103 |
| abstract_inverted_index.unified | 98 |
| abstract_inverted_index.Magnetic | 1 |
| abstract_inverted_index.Notably, | 128 |
| abstract_inverted_index.achieved | 102 |
| abstract_inverted_index.approach | 114 |
| abstract_inverted_index.category | 74, 139 |
| abstract_inverted_index.content. | 27 |
| abstract_inverted_index.decoding | 24, 39, 69 |
| abstract_inverted_index.enhances | 116 |
| abstract_inverted_index.features | 163 |
| abstract_inverted_index.patterns | 95 |
| abstract_inverted_index.presents | 5 |
| abstract_inverted_index.semantic | 26, 152, 162 |
| abstract_inverted_index.BrainCLIP | 41, 85, 129, 142 |
| abstract_inverted_index.Moreover, | 141 |
| abstract_inverted_index.Resonance | 2 |
| abstract_inverted_index.abilities | 49 |
| abstract_inverted_index.activity, | 53 |
| abstract_inverted_index.alignment | 123 |
| abstract_inverted_index.capturing | 160 |
| abstract_inverted_index.competing | 154 |
| abstract_inverted_index.decoding, | 75 |
| abstract_inverted_index.decoding. | 140 |
| abstract_inverted_index.embedding | 100 |
| abstract_inverted_index.fMRI-text | 122 |
| abstract_inverted_index.favorably | 155 |
| abstract_inverted_index.fidelity, | 153 |
| abstract_inverted_index.highlight | 111 |
| abstract_inverted_index.including | 71 |
| abstract_inverted_index.introduce | 33 |
| abstract_inverted_index.involving | 19 |
| abstract_inverted_index.leverages | 42 |
| abstract_inverted_index.objective | 83 |
| abstract_inverted_index.surpasses | 130 |
| abstract_inverted_index.zero-shot | 72, 137 |
| abstract_inverted_index.BrainCLIP, | 34 |
| abstract_inverted_index.Functional | 0 |
| abstract_inverted_index.alignment, | 77 |
| abstract_inverted_index.capability | 145 |
| abstract_inverted_index.challenges | 6 |
| abstract_inverted_index.fMRI-based | 37, 125, 165 |
| abstract_inverted_index.high-level | 161 |
| abstract_inverted_index.innovative | 36 |
| abstract_inverted_index.translates | 93 |
| abstract_inverted_index.Contrastive | 43 |
| abstract_inverted_index.challenges, | 31 |
| abstract_inverted_index.cross-modal | 47 |
| abstract_inverted_index.demonstrate | 63 |
| abstract_inverted_index.experiments | 62, 110 |
| abstract_inverted_index.generation. | 80, 127 |
| abstract_inverted_index.multi-modal | 134 |
| abstract_inverted_index.performance | 117 |
| abstract_inverted_index.supervision | 107 |
| abstract_inverted_index.demonstrates | 143 |
| abstract_inverted_index.integration. | 108 |
| abstract_inverted_index.particularly | 16 |
| abstract_inverted_index.effectiveness | 65 |
| abstract_inverted_index.fMRI-to-image | 79 |
| abstract_inverted_index.significantly | 115 |
| abstract_inverted_index.Language-Image | 44 |
| abstract_inverted_index.Pre-training's | 45 |
| abstract_inverted_index.generalization | 48 |
| abstract_inverted_index.reconstructing | 20, 147 |
| abstract_inverted_index.fMRI-image/text | 76 |
| abstract_inverted_index.reconstruction. | 168 |
| abstract_inverted_index.signal-to-noise | 14 |
| abstract_inverted_index.state-of-the-art | 157 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.99496827 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |