BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/tmi.2022.3218745
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tmi.2022.3218745
- OA Status
- green
- Cited By
- 140
- References
- 115
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4307847583
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4307847583Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tmi.2022.3218745Digital Object Identifier
- Title
-
BrainGB: A Benchmark for Brain Network Analysis With Graph Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-04Full publication date if available
- Authors
-
Hejie Cui, Wei Dai, Yanqiao Zhu, Xuan Kan, Antonio Aodong Chen Gu, Joshua Lukemire, Liang Zhan, Lifang He, Ying Guo, Carl YangList of authors in order
- Landing page
-
https://doi.org/10.1109/tmi.2022.3218745Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://pmc.ncbi.nlm.nih.gov/articles/PMC10079627/pdf/nihms-1864927.pdfDirect OA link when available
- Concepts
-
Computer science, Connectome, Neuroimaging, Artificial intelligence, Python (programming language), Benchmark (surveying), Machine learning, Modalities, Connectomics, Power graph analysis, Artificial neural network, Visualization, Bridging (networking), Human Connectome Project, Graph, Data science, Functional connectivity, Theoretical computer science, Programming language, Neuroscience, Biology, Computer network, Social science, Sociology, Geodesy, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
140Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 50, 2024: 64, 2023: 22, 2022: 4Per-year citation counts (last 5 years)
- References (count)
-
115Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4307847583 |
|---|---|
| doi | https://doi.org/10.1109/tmi.2022.3218745 |
| ids.doi | https://doi.org/10.1109/tmi.2022.3218745 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36318557 |
| ids.openalex | https://openalex.org/W4307847583 |
| fwci | 24.07813694 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D019985 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Benchmarking |
| mesh[2].qualifier_ui | Q000000981 |
| mesh[2].descriptor_ui | D001921 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | diagnostic imaging |
| mesh[2].descriptor_name | Brain |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D063132 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Connectome |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D016571 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Neural Networks, Computer |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D059906 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neuroimaging |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D019985 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Benchmarking |
| mesh[8].qualifier_ui | Q000000981 |
| mesh[8].descriptor_ui | D001921 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | diagnostic imaging |
| mesh[8].descriptor_name | Brain |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D063132 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Connectome |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D016571 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Neural Networks, Computer |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D059906 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Neuroimaging |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D019985 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Benchmarking |
| mesh[14].qualifier_ui | Q000000981 |
| mesh[14].descriptor_ui | D001921 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | diagnostic imaging |
| mesh[14].descriptor_name | Brain |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D063132 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Connectome |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D016571 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Neural Networks, Computer |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D059906 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Neuroimaging |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D019985 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Benchmarking |
| mesh[20].qualifier_ui | Q000000981 |
| mesh[20].descriptor_ui | D001921 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | diagnostic imaging |
| mesh[20].descriptor_name | Brain |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D063132 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Connectome |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D016571 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Neural Networks, Computer |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D059906 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Neuroimaging |
| type | article |
| title | BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks |
| awards[0].id | https://openalex.org/G7732922048 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | U01DA041025 |
| awards[0].funder_display_name | National Institutes of Health |
| awards[1].id | https://openalex.org/G1453274132 |
| awards[1].funder_id | https://openalex.org/F4320332161 |
| awards[1].display_name | |
| awards[1].funder_award_id | U24DA041147 |
| awards[1].funder_display_name | National Institutes of Health |
| awards[2].id | https://openalex.org/G4643891584 |
| awards[2].funder_id | https://openalex.org/F4320332161 |
| awards[2].display_name | |
| awards[2].funder_award_id | U01DA041156 |
| awards[2].funder_display_name | National Institutes of Health |
| awards[3].id | https://openalex.org/G4752599457 |
| awards[3].funder_id | https://openalex.org/F4320332161 |
| awards[3].display_name | |
| awards[3].funder_award_id | U01DA041174 |
| awards[3].funder_display_name | National Institutes of Health |
| awards[4].id | https://openalex.org/G5827000574 |
| awards[4].funder_id | https://openalex.org/F4320337345 |
| awards[4].display_name | |
| awards[4].funder_award_id | N00014-18-1-2009 |
| awards[4].funder_display_name | Office of Naval Research |
| awards[5].id | https://openalex.org/G6945432325 |
| awards[5].funder_id | https://openalex.org/F4320332161 |
| awards[5].display_name | |
| awards[5].funder_award_id | U01DA041093 |
| awards[5].funder_display_name | National Institutes of Health |
| awards[6].id | https://openalex.org/G5358798899 |
| awards[6].funder_id | https://openalex.org/F4320332161 |
| awards[6].display_name | |
| awards[6].funder_award_id | U01DA051037 |
| awards[6].funder_display_name | National Institutes of Health |
| awards[7].id | https://openalex.org/G2784032578 |
| awards[7].funder_id | https://openalex.org/F4320332161 |
| awards[7].display_name | |
| awards[7].funder_award_id | U01DA050988 |
| awards[7].funder_display_name | National Institutes of Health |
| awards[8].id | https://openalex.org/G2338281217 |
| awards[8].funder_id | https://openalex.org/F4320332161 |
| awards[8].display_name | |
| awards[8].funder_award_id | U01DA050989 |
| awards[8].funder_display_name | National Institutes of Health |
| awards[9].id | https://openalex.org/G2311639730 |
| awards[9].funder_id | https://openalex.org/F4320332161 |
| awards[9].display_name | |
| awards[9].funder_award_id | U24DA041123 |
| awards[9].funder_display_name | National Institutes of Health |
| awards[10].id | https://openalex.org/G7297353144 |
| awards[10].funder_id | https://openalex.org/F4320332161 |
| awards[10].display_name | |
| awards[10].funder_award_id | U01DA041148 |
| awards[10].funder_display_name | National Institutes of Health |
| awards[11].id | https://openalex.org/G717911792 |
| awards[11].funder_id | https://openalex.org/F4320332161 |
| awards[11].display_name | |
| awards[11].funder_award_id | U01DA051016 |
| awards[11].funder_display_name | National Institutes of Health |
| awards[12].id | https://openalex.org/G3690857051 |
| awards[12].funder_id | https://openalex.org/F4320332161 |
| awards[12].display_name | |
| awards[12].funder_award_id | U01DA041089 |
| awards[12].funder_display_name | National Institutes of Health |
| awards[13].id | https://openalex.org/G3206248822 |
| awards[13].funder_id | https://openalex.org/F4320306076 |
| awards[13].display_name | |
| awards[13].funder_award_id | IIS 2045848 |
| awards[13].funder_display_name | National Science Foundation |
| awards[14].id | https://openalex.org/G2995001478 |
| awards[14].funder_id | https://openalex.org/F4320332161 |
| awards[14].display_name | |
| awards[14].funder_award_id | U01DA051039 |
| awards[14].funder_display_name | National Institutes of Health |
| awards[15].id | https://openalex.org/G3757052267 |
| awards[15].funder_id | https://openalex.org/F4320306076 |
| awards[15].display_name | |
| awards[15].funder_award_id | IIS 1837956 |
| awards[15].funder_display_name | National Science Foundation |
| awards[16].id | https://openalex.org/G1380632597 |
| awards[16].funder_id | https://openalex.org/F4320332161 |
| awards[16].display_name | |
| awards[16].funder_award_id | U01DA050987 |
| awards[16].funder_display_name | National Institutes of Health |
| awards[17].id | https://openalex.org/G6405029640 |
| awards[17].funder_id | https://openalex.org/F4320332161 |
| awards[17].display_name | |
| awards[17].funder_award_id | U01DA041048 |
| awards[17].funder_display_name | National Institutes of Health |
| awards[18].id | https://openalex.org/G7816880612 |
| awards[18].funder_id | https://openalex.org/F4320332161 |
| awards[18].display_name | |
| awards[18].funder_award_id | U01DA041134 |
| awards[18].funder_display_name | National Institutes of Health |
| awards[19].id | https://openalex.org/G1806936822 |
| awards[19].funder_id | https://openalex.org/F4320332161 |
| awards[19].display_name | |
| awards[19].funder_award_id | U01DA041120 |
| awards[19].funder_display_name | National Institutes of Health |
| awards[20].id | https://openalex.org/G983282301 |
| awards[20].funder_id | https://openalex.org/F4320332161 |
| awards[20].display_name | |
| awards[20].funder_award_id | U01DA041028 |
| awards[20].funder_display_name | National Institutes of Health |
| awards[21].id | https://openalex.org/G7005587430 |
| awards[21].funder_id | https://openalex.org/F4320332161 |
| awards[21].display_name | |
| awards[21].funder_award_id | U01DA041117 |
| awards[21].funder_display_name | National Institutes of Health |
| awards[22].id | https://openalex.org/G4428288514 |
| awards[22].funder_id | https://openalex.org/F4320332161 |
| awards[22].display_name | |
| awards[22].funder_award_id | U01DA041022 |
| awards[22].funder_display_name | National Institutes of Health |
| awards[23].id | https://openalex.org/G8302419370 |
| awards[23].funder_id | https://openalex.org/F4320332161 |
| awards[23].display_name | |
| awards[23].funder_award_id | U01DA051038 |
| awards[23].funder_display_name | National Institutes of Health |
| awards[24].id | https://openalex.org/G634314130 |
| awards[24].funder_id | https://openalex.org/F4320332161 |
| awards[24].display_name | |
| awards[24].funder_award_id | U01DA051018 |
| awards[24].funder_display_name | National Institutes of Health |
| awards[25].id | https://openalex.org/G73412920 |
| awards[25].funder_id | https://openalex.org/F4320332161 |
| awards[25].display_name | |
| awards[25].funder_award_id | U01DA041106 |
| awards[25].funder_display_name | National Institutes of Health |
| biblio.issue | 2 |
| biblio.volume | 42 |
| biblio.last_page | 506 |
| biblio.first_page | 493 |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T14393 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9961000084877014 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Health, Environment, Cognitive Aging |
| topics[2].id | https://openalex.org/T11304 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Advanced Neuroimaging Techniques and Applications |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320309381 |
| funders[1].ror | https://ror.org/03czfpz43 |
| funders[1].display_name | Emory University |
| funders[2].id | https://openalex.org/F4320332161 |
| funders[2].ror | https://ror.org/01cwqze88 |
| funders[2].display_name | National Institutes of Health |
| funders[3].id | https://openalex.org/F4320333424 |
| funders[3].ror | |
| funders[3].display_name | University Research Committee, Emory University |
| funders[4].id | https://openalex.org/F4320337345 |
| funders[4].ror | https://ror.org/00rk2pe57 |
| funders[4].display_name | Office of Naval Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8324155807495117 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C45715564 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6517181396484375 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1292103 |
| concepts[1].display_name | Connectome |
| concepts[2].id | https://openalex.org/C58693492 |
| concepts[2].level | 2 |
| concepts[2].score | 0.614325761795044 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q551875 |
| concepts[2].display_name | Neuroimaging |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5647120475769043 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C519991488 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5397788286209106 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q28865 |
| concepts[4].display_name | Python (programming language) |
| concepts[5].id | https://openalex.org/C185798385 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5362875461578369 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[5].display_name | Benchmark (surveying) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5350457429885864 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C2779903281 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4846821129322052 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6888026 |
| concepts[7].display_name | Modalities |
| concepts[8].id | https://openalex.org/C2779097318 |
| concepts[8].level | 4 |
| concepts[8].score | 0.48441559076309204 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2993446 |
| concepts[8].display_name | Connectomics |
| concepts[9].id | https://openalex.org/C106937863 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4678901731967926 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7236518 |
| concepts[9].display_name | Power graph analysis |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4610324203968048 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C36464697 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42014044523239136 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[11].display_name | Visualization |
| concepts[12].id | https://openalex.org/C174348530 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41444793343544006 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q188635 |
| concepts[12].display_name | Bridging (networking) |
| concepts[13].id | https://openalex.org/C97820695 |
| concepts[13].level | 3 |
| concepts[13].score | 0.4140772223472595 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q387749 |
| concepts[13].display_name | Human Connectome Project |
| concepts[14].id | https://openalex.org/C132525143 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3919844627380371 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[14].display_name | Graph |
| concepts[15].id | https://openalex.org/C2522767166 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3660498261451721 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[15].display_name | Data science |
| concepts[16].id | https://openalex.org/C3018011982 |
| concepts[16].level | 2 |
| concepts[16].score | 0.22718387842178345 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[16].display_name | Functional connectivity |
| concepts[17].id | https://openalex.org/C80444323 |
| concepts[17].level | 1 |
| concepts[17].score | 0.21846672892570496 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[17].display_name | Theoretical computer science |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.13106834888458252 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C169760540 |
| concepts[19].level | 1 |
| concepts[19].score | 0.10749316215515137 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[19].display_name | Neuroscience |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| concepts[21].id | https://openalex.org/C31258907 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[21].display_name | Computer network |
| concepts[22].id | https://openalex.org/C36289849 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[22].display_name | Social science |
| concepts[23].id | https://openalex.org/C144024400 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[23].display_name | Sociology |
| concepts[24].id | https://openalex.org/C13280743 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[24].display_name | Geodesy |
| concepts[25].id | https://openalex.org/C205649164 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[25].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8324155807495117 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/connectome |
| keywords[1].score | 0.6517181396484375 |
| keywords[1].display_name | Connectome |
| keywords[2].id | https://openalex.org/keywords/neuroimaging |
| keywords[2].score | 0.614325761795044 |
| keywords[2].display_name | Neuroimaging |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5647120475769043 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/python |
| keywords[4].score | 0.5397788286209106 |
| keywords[4].display_name | Python (programming language) |
| keywords[5].id | https://openalex.org/keywords/benchmark |
| keywords[5].score | 0.5362875461578369 |
| keywords[5].display_name | Benchmark (surveying) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5350457429885864 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/modalities |
| keywords[7].score | 0.4846821129322052 |
| keywords[7].display_name | Modalities |
| keywords[8].id | https://openalex.org/keywords/connectomics |
| keywords[8].score | 0.48441559076309204 |
| keywords[8].display_name | Connectomics |
| keywords[9].id | https://openalex.org/keywords/power-graph-analysis |
| keywords[9].score | 0.4678901731967926 |
| keywords[9].display_name | Power graph analysis |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.4610324203968048 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/visualization |
| keywords[11].score | 0.42014044523239136 |
| keywords[11].display_name | Visualization |
| keywords[12].id | https://openalex.org/keywords/bridging |
| keywords[12].score | 0.41444793343544006 |
| keywords[12].display_name | Bridging (networking) |
| keywords[13].id | https://openalex.org/keywords/human-connectome-project |
| keywords[13].score | 0.4140772223472595 |
| keywords[13].display_name | Human Connectome Project |
| keywords[14].id | https://openalex.org/keywords/graph |
| keywords[14].score | 0.3919844627380371 |
| keywords[14].display_name | Graph |
| keywords[15].id | https://openalex.org/keywords/data-science |
| keywords[15].score | 0.3660498261451721 |
| keywords[15].display_name | Data science |
| keywords[16].id | https://openalex.org/keywords/functional-connectivity |
| keywords[16].score | 0.22718387842178345 |
| keywords[16].display_name | Functional connectivity |
| keywords[17].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[17].score | 0.21846672892570496 |
| keywords[17].display_name | Theoretical computer science |
| keywords[18].id | https://openalex.org/keywords/programming-language |
| keywords[18].score | 0.13106834888458252 |
| keywords[18].display_name | Programming language |
| keywords[19].id | https://openalex.org/keywords/neuroscience |
| keywords[19].score | 0.10749316215515137 |
| keywords[19].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.1109/tmi.2022.3218745 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S58069681 |
| locations[0].source.issn | 0278-0062, 1558-254X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0278-0062 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Medical Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Medical Imaging |
| locations[0].landing_page_url | https://doi.org/10.1109/tmi.2022.3218745 |
| locations[1].id | pmid:36318557 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on medical imaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36318557 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10079627 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10079627/pdf/nihms-1864927.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Trans Med Imaging |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10079627 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5033157677 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6388-2619 |
| authorships[0].author.display_name | Hejie Cui |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Emory University, Atlanta, GA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I150468666 |
| authorships[0].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Emory University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hejie Cui |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Emory University, Atlanta, GA, USA |
| authorships[1].author.id | https://openalex.org/A5081209439 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7376-6977 |
| authorships[1].author.display_name | Wei Dai |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Emory University, Atlanta, GA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I150468666 |
| authorships[1].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Emory University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wei Dai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Emory University, Atlanta, GA, USA |
| authorships[2].author.id | https://openalex.org/A5015101640 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2205-5304 |
| authorships[2].author.display_name | Yanqiao Zhu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, University of California at Los Angeles, Los Angeles, CA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I161318765 |
| authorships[2].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Los Angeles |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yanqiao Zhu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, University of California at Los Angeles, Los Angeles, CA, USA |
| authorships[3].author.id | https://openalex.org/A5020981458 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0039-8314 |
| authorships[3].author.display_name | Xuan Kan |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, Emory University, Atlanta, GA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I150468666 |
| authorships[3].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Emory University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xuan Kan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, Emory University, Atlanta, GA, USA |
| authorships[4].author.id | https://openalex.org/A5046858414 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9525-9263 |
| authorships[4].author.display_name | Antonio Aodong Chen Gu |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, Emory University, Atlanta, GA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I150468666 |
| authorships[4].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Emory University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Antonio Aodong Chen Gu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, Emory University, Atlanta, GA, USA |
| authorships[5].author.id | https://openalex.org/A5056951551 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Joshua Lukemire |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I150468666 |
| authorships[5].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Emory University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Joshua Lukemire |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA |
| authorships[6].author.id | https://openalex.org/A5001309013 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7920-4828 |
| authorships[6].author.display_name | Liang Zhan |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA |
| authorships[6].institutions[0].id | https://openalex.org/I170201317 |
| authorships[6].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Pittsburgh |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Liang Zhan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA |
| authorships[7].author.id | https://openalex.org/A5071709543 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7810-9071 |
| authorships[7].author.display_name | Lifang He |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I186143895 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA |
| authorships[7].institutions[0].id | https://openalex.org/I186143895 |
| authorships[7].institutions[0].ror | https://ror.org/012afjb06 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I186143895 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Lehigh University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Lifang He |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA |
| authorships[8].author.id | https://openalex.org/A5018964484 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-3934-3097 |
| authorships[8].author.display_name | Ying Guo |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA |
| authorships[8].institutions[0].id | https://openalex.org/I150468666 |
| authorships[8].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Emory University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Ying Guo |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA |
| authorships[9].author.id | https://openalex.org/A5006897094 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-9145-4531 |
| authorships[9].author.display_name | Carl Yang |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Computer Science, Emory University, Atlanta, GA, USA |
| authorships[9].institutions[0].id | https://openalex.org/I150468666 |
| authorships[9].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Emory University |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Carl Yang |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Computer Science, Emory University, Atlanta, GA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10079627/pdf/nihms-1864927.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W3210800206, https://openalex.org/W1744057168, https://openalex.org/W2091472861, https://openalex.org/W2945607120, https://openalex.org/W4323359826, https://openalex.org/W2741941708, https://openalex.org/W2114571052, https://openalex.org/W2079635207, https://openalex.org/W2611561168, https://openalex.org/W2885436153 |
| cited_by_count | 140 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 50 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 64 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 22 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:10079627 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10079627/pdf/nihms-1864927.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | IEEE Trans Med Imaging |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10079627 |
| primary_location.id | doi:10.1109/tmi.2022.3218745 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S58069681 |
| primary_location.source.issn | 0278-0062, 1558-254X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0278-0062 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Medical Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Medical Imaging |
| primary_location.landing_page_url | https://doi.org/10.1109/tmi.2022.3218745 |
| publication_date | 2022-11-04 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3199008037, https://openalex.org/W2949763225, https://openalex.org/W2153528736, https://openalex.org/W2977566196, https://openalex.org/W1999653836, https://openalex.org/W2970282997, https://openalex.org/W2950317798, https://openalex.org/W1513935208, https://openalex.org/W3196076125, https://openalex.org/W6791353385, https://openalex.org/W4214612132, https://openalex.org/W3097777922, https://openalex.org/W6726873649, https://openalex.org/W6754929296, https://openalex.org/W2526511911, https://openalex.org/W3092580397, https://openalex.org/W3034674374, https://openalex.org/W2110302945, https://openalex.org/W1968187292, https://openalex.org/W2886471399, https://openalex.org/W2908835407, https://openalex.org/W2006931708, https://openalex.org/W2341692630, https://openalex.org/W2292852110, https://openalex.org/W2952871955, https://openalex.org/W4220697754, https://openalex.org/W2883196872, https://openalex.org/W2341934844, https://openalex.org/W2088272457, https://openalex.org/W2054924908, https://openalex.org/W2567769634, https://openalex.org/W2559066946, https://openalex.org/W2966385502, https://openalex.org/W2559496224, https://openalex.org/W6754934763, https://openalex.org/W2604314403, https://openalex.org/W2899457523, https://openalex.org/W2979847772, https://openalex.org/W6796233595, https://openalex.org/W4296217498, https://openalex.org/W3178444448, https://openalex.org/W6838252289, https://openalex.org/W4225011360, https://openalex.org/W4285094021, https://openalex.org/W6693744308, https://openalex.org/W6761890509, https://openalex.org/W4255439415, https://openalex.org/W1999976658, https://openalex.org/W2950568021, https://openalex.org/W2122328291, https://openalex.org/W2020519533, https://openalex.org/W2167868121, https://openalex.org/W2330558670, https://openalex.org/W2138905229, https://openalex.org/W1988494453, https://openalex.org/W2115799070, https://openalex.org/W2103536416, https://openalex.org/W2142059961, https://openalex.org/W2142900310, https://openalex.org/W2000133863, https://openalex.org/W1550018017, https://openalex.org/W3005517155, https://openalex.org/W2947064219, https://openalex.org/W2954818391, https://openalex.org/W2950051395, https://openalex.org/W1966583968, https://openalex.org/W2252433728, https://openalex.org/W4306317025, https://openalex.org/W6771273758, https://openalex.org/W6771625333, https://openalex.org/W6763057493, https://openalex.org/W6784568508, https://openalex.org/W6623753063, https://openalex.org/W6751664678, https://openalex.org/W6755821303, https://openalex.org/W6739901393, https://openalex.org/W3146366485, https://openalex.org/W6755207826, https://openalex.org/W3212386989, https://openalex.org/W3206568895, https://openalex.org/W6784741312, https://openalex.org/W6753331806, https://openalex.org/W3091336992, https://openalex.org/W6846041338, https://openalex.org/W6770735192, https://openalex.org/W2950086191, https://openalex.org/W1980553836, https://openalex.org/W4281400809, https://openalex.org/W2993515580, https://openalex.org/W2950845927, https://openalex.org/W3022313312, https://openalex.org/W2097390792, https://openalex.org/W2058046532, https://openalex.org/W2089572795, https://openalex.org/W2079450984, https://openalex.org/W2101135654, https://openalex.org/W2789530810, https://openalex.org/W1983208069, https://openalex.org/W2141200867, https://openalex.org/W1715858500, https://openalex.org/W2131828344, https://openalex.org/W6766978945, https://openalex.org/W6760045743, https://openalex.org/W4281699852, https://openalex.org/W2272532545, https://openalex.org/W3101707147, https://openalex.org/W4288021162, https://openalex.org/W4206657110, https://openalex.org/W3105762472, https://openalex.org/W3169752883, https://openalex.org/W3090959320, https://openalex.org/W4281749642, https://openalex.org/W4226294142, https://openalex.org/W2899886700, https://openalex.org/W2997785591 |
| referenced_works_count | 115 |
| abstract_inverted_index.a | 59, 79, 125 |
| abstract_inverted_index.To | 72, 137 |
| abstract_inverted_index.We | 113, 166 |
| abstract_inverted_index.an | 162 |
| abstract_inverted_index.as | 159, 161 |
| abstract_inverted_index.at | 153 |
| abstract_inverted_index.by | 91 |
| abstract_inverted_index.in | 51, 182 |
| abstract_inverted_index.of | 3, 15, 62, 110, 127 |
| abstract_inverted_index.on | 117, 134, 143 |
| abstract_inverted_index.or | 9 |
| abstract_inverted_index.to | 38, 64 |
| abstract_inverted_index.we | 76, 148 |
| abstract_inverted_index.(1) | 92 |
| abstract_inverted_index.(2) | 106 |
| abstract_inverted_index.GNN | 111, 132 |
| abstract_inverted_index.and | 101, 105, 121, 123, 140, 176, 185 |
| abstract_inverted_index.due | 37 |
| abstract_inverted_index.for | 20, 42, 68, 81, 98, 130, 179 |
| abstract_inverted_index.has | 12, 55 |
| abstract_inverted_index.how | 63 |
| abstract_inverted_index.not | 56 |
| abstract_inverted_index.one | 14 |
| abstract_inverted_index.set | 126 |
| abstract_inverted_index.the | 1, 4, 16, 89, 108, 150 |
| abstract_inverted_index.yet | 57 |
| abstract_inverted_index.GNNs | 67 |
| abstract_inverted_index.been | 58 |
| abstract_inverted_index.both | 99 |
| abstract_inverted_index.deep | 31 |
| abstract_inverted_index.from | 29 |
| abstract_inverted_index.gap, | 75 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.hope | 167 |
| abstract_inverted_index.host | 149 |
| abstract_inverted_index.many | 52 |
| abstract_inverted_index.most | 17 |
| abstract_inverted_index.open | 139 |
| abstract_inverted_index.that | 168 |
| abstract_inverted_index.this | 74, 169, 183 |
| abstract_inverted_index.well | 160 |
| abstract_inverted_index.will | 171 |
| abstract_inverted_index.with | 85, 155 |
| abstract_inverted_index.work | 170 |
| abstract_inverted_index.GNNs. | 86 |
| abstract_inverted_index.Graph | 24 |
| abstract_inverted_index.brain | 6, 69, 82, 94, 135, 145 |
| abstract_inverted_index.broad | 35 |
| abstract_inverted_index.data. | 46 |
| abstract_inverted_index.human | 5 |
| abstract_inverted_index.novel | 184 |
| abstract_inverted_index.offer | 177 |
| abstract_inverted_index.power | 41 |
| abstract_inverted_index.study | 61 |
| abstract_inverted_index.their | 39, 48 |
| abstract_inverted_index.there | 54 |
| abstract_inverted_index.using | 7 |
| abstract_inverted_index.(GNNs) | 27 |
| abstract_inverted_index.Neural | 25 |
| abstract_inverted_index.Python | 164 |
| abstract_inverted_index.across | 119 |
| abstract_inverted_index.become | 13 |
| abstract_inverted_index.bridge | 73 |
| abstract_inverted_index.design | 65 |
| abstract_inverted_index.future | 180 |
| abstract_inverted_index.useful | 173 |
| abstract_inverted_index.BrainGB | 87, 151 |
| abstract_inverted_index.Despite | 47 |
| abstract_inverted_index.Mapping | 0 |
| abstract_inverted_index.cohorts | 120 |
| abstract_inverted_index.complex | 44 |
| abstract_inverted_index.conduct | 114 |
| abstract_inverted_index.designs | 133 |
| abstract_inverted_index.fields, | 53 |
| abstract_inverted_index.general | 128 |
| abstract_inverted_index.models, | 156 |
| abstract_inverted_index.network | 70, 83, 95, 146 |
| abstract_inverted_index.present | 77 |
| abstract_inverted_index.process | 90 |
| abstract_inverted_index.provide | 172 |
| abstract_inverted_index.recipes | 129 |
| abstract_inverted_index.support | 138 |
| abstract_inverted_index.website | 152 |
| abstract_inverted_index.BrainGB, | 78 |
| abstract_inverted_index.Networks | 26 |
| abstract_inverted_index.analysis | 84 |
| abstract_inverted_index.datasets | 118 |
| abstract_inverted_index.designs. | 112 |
| abstract_inverted_index.evidence | 175 |
| abstract_inverted_index.insights | 178 |
| abstract_inverted_index.interest | 36 |
| abstract_inverted_index.learning | 32 |
| abstract_inverted_index.modeling | 43 |
| abstract_inverted_index.package. | 165 |
| abstract_inverted_index.research | 142, 181 |
| abstract_inverted_index.superior | 49 |
| abstract_inverted_index.GNN-based | 144 |
| abstract_inverted_index.Recently, | 23 |
| abstract_inverted_index.analysis, | 147 |
| abstract_inverted_index.analysis. | 22, 71 |
| abstract_inverted_index.attracted | 34 |
| abstract_inverted_index.benchmark | 80 |
| abstract_inverted_index.effective | 66, 131 |
| abstract_inverted_index.empirical | 174 |
| abstract_inverted_index.examples, | 158 |
| abstract_inverted_index.extensive | 115 |
| abstract_inverted_index.geometric | 30 |
| abstract_inverted_index.motivated | 28 |
| abstract_inverted_index.networked | 45 |
| abstract_inverted_index.networks. | 136 |
| abstract_inverted_index.paradigms | 19 |
| abstract_inverted_index.pervasive | 18 |
| abstract_inverted_index.pipelines | 97 |
| abstract_inverted_index.promising | 186 |
| abstract_inverted_index.recommend | 124 |
| abstract_inverted_index.connectome | 2 |
| abstract_inverted_index.direction. | 187 |
| abstract_inverted_index.functional | 10, 100 |
| abstract_inverted_index.modalities | 104, 122 |
| abstract_inverted_index.out-of-box | 163 |
| abstract_inverted_index.structural | 8, 102 |
| abstract_inverted_index.systematic | 60 |
| abstract_inverted_index.tutorials, | 157 |
| abstract_inverted_index.established | 40 |
| abstract_inverted_index.experiments | 116 |
| abstract_inverted_index.performance | 50 |
| abstract_inverted_index.summarizing | 93 |
| abstract_inverted_index.connectivity | 11 |
| abstract_inverted_index.construction | 96 |
| abstract_inverted_index.modularizing | 107 |
| abstract_inverted_index.neuroimaging | 21, 103 |
| abstract_inverted_index.reproducible | 141 |
| abstract_inverted_index.standardizes | 88 |
| abstract_inverted_index.implementation | 109 |
| abstract_inverted_index.https://braingb.us | 154 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.99753402 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |