BrainNPT: Pre-Training Transformer Networks for Brain Network Classification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/tnsre.2024.3434343
Deep learning methods have advanced quickly in brain imaging analysis over the past few years, but they are usually restricted by the limited labeled data. Pre-trained model on unlabeled data has presented promising improvement in feature learning in many domains, such as natural language processing. However, this technique is under-explored in brain network analysis. In this paper, we focused on pre-training methods with Transformer networks to leverage existing unlabeled data for brain functional network classification. First, we proposed a Transformer-based neural network, named as BrainNPT, for brain functional network classification. The proposed method leveraged token as a classification embedding vector for the Transformer model to effectively capture the representation of brain networks. Second, we proposed a pre-training framework for BrainNPT model to leverage unlabeled brain network data to learn the structure information of brain functional networks. The results of classification experiments demonstrated the BrainNPT model without pre-training achieved the best performance with the state-of-the-art models, and the BrainNPT model with pre-training strongly outperformed the state-of-the-art models. The pre-training BrainNPT model improved 8.75% of accuracy compared with the model without pre-training. We further compared the pre-training strategies and the data augmentation methods, analyzed the influence of the parameters of the model, and explained the trained model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tnsre.2024.3434343
- OA Status
- diamond
- Cited By
- 13
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401070038
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401070038Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tnsre.2024.3434343Digital Object Identifier
- Title
-
BrainNPT: Pre-Training Transformer Networks for Brain Network ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Jinlong Hu, Yangmin Huang, Nan Wang, Shoubin DongList of authors in order
- Landing page
-
https://doi.org/10.1109/tnsre.2024.3434343Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/tnsre.2024.3434343Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Transformer, Leverage (statistics), Artificial neural network, Machine learning, Embedding, Labeled data, Training set, Security token, Pattern recognition (psychology), Engineering, Computer security, Electrical engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 2, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401070038 |
|---|---|
| doi | https://doi.org/10.1109/tnsre.2024.3434343 |
| ids.doi | https://doi.org/10.1109/tnsre.2024.3434343 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39074019 |
| ids.openalex | https://openalex.org/W4401070038 |
| fwci | 5.69303145 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D016571 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Neural Networks, Computer |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000465 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Algorithms |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000077321 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Deep Learning |
| mesh[4].qualifier_ui | Q000502 |
| mesh[4].descriptor_ui | D001921 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | physiology |
| mesh[4].descriptor_name | Brain |
| mesh[5].qualifier_ui | Q000000981 |
| mesh[5].descriptor_ui | D001921 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | diagnostic imaging |
| mesh[5].descriptor_name | Brain |
| mesh[6].qualifier_ui | Q000502 |
| mesh[6].descriptor_ui | D009415 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | physiology |
| mesh[6].descriptor_name | Nerve Net |
| mesh[7].qualifier_ui | Q000000981 |
| mesh[7].descriptor_ui | D009415 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | diagnostic imaging |
| mesh[7].descriptor_name | Nerve Net |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008279 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Magnetic Resonance Imaging |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D009323 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Natural Language Processing |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016571 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Neural Networks, Computer |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000465 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Algorithms |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000077321 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Deep Learning |
| mesh[14].qualifier_ui | Q000502 |
| mesh[14].descriptor_ui | D001921 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | physiology |
| mesh[14].descriptor_name | Brain |
| mesh[15].qualifier_ui | Q000000981 |
| mesh[15].descriptor_ui | D001921 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | diagnostic imaging |
| mesh[15].descriptor_name | Brain |
| mesh[16].qualifier_ui | Q000502 |
| mesh[16].descriptor_ui | D009415 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | physiology |
| mesh[16].descriptor_name | Nerve Net |
| mesh[17].qualifier_ui | Q000000981 |
| mesh[17].descriptor_ui | D009415 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | diagnostic imaging |
| mesh[17].descriptor_name | Nerve Net |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D008279 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Magnetic Resonance Imaging |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D009323 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Natural Language Processing |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006801 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Humans |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D016571 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Neural Networks, Computer |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000465 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Algorithms |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000077321 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Deep Learning |
| mesh[24].qualifier_ui | Q000502 |
| mesh[24].descriptor_ui | D001921 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | physiology |
| mesh[24].descriptor_name | Brain |
| mesh[25].qualifier_ui | Q000000981 |
| mesh[25].descriptor_ui | D001921 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | diagnostic imaging |
| mesh[25].descriptor_name | Brain |
| mesh[26].qualifier_ui | Q000502 |
| mesh[26].descriptor_ui | D009415 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | physiology |
| mesh[26].descriptor_name | Nerve Net |
| mesh[27].qualifier_ui | Q000000981 |
| mesh[27].descriptor_ui | D009415 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | diagnostic imaging |
| mesh[27].descriptor_name | Nerve Net |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D008279 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Magnetic Resonance Imaging |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D009323 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Natural Language Processing |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D006801 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Humans |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D016571 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Neural Networks, Computer |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D000465 |
| mesh[32].is_major_topic | True |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Algorithms |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D000077321 |
| mesh[33].is_major_topic | True |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Deep Learning |
| mesh[34].qualifier_ui | Q000502 |
| mesh[34].descriptor_ui | D001921 |
| mesh[34].is_major_topic | True |
| mesh[34].qualifier_name | physiology |
| mesh[34].descriptor_name | Brain |
| mesh[35].qualifier_ui | Q000000981 |
| mesh[35].descriptor_ui | D001921 |
| mesh[35].is_major_topic | True |
| mesh[35].qualifier_name | diagnostic imaging |
| mesh[35].descriptor_name | Brain |
| mesh[36].qualifier_ui | Q000502 |
| mesh[36].descriptor_ui | D009415 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | physiology |
| mesh[36].descriptor_name | Nerve Net |
| mesh[37].qualifier_ui | Q000000981 |
| mesh[37].descriptor_ui | D009415 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | diagnostic imaging |
| mesh[37].descriptor_name | Nerve Net |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D008279 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Magnetic Resonance Imaging |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D009323 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Natural Language Processing |
| type | article |
| title | BrainNPT: Pre-Training Transformer Networks for Brain Network Classification |
| biblio.issue | |
| biblio.volume | 32 |
| biblio.last_page | 2736 |
| biblio.first_page | 2727 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9932000041007996 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9922000169754028 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T10241 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.98089998960495 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Functional Brain Connectivity Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7186020612716675 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6330031156539917 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C66322947 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5722977519035339 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[2].display_name | Transformer |
| concepts[3].id | https://openalex.org/C153083717 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5593085885047913 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[3].display_name | Leverage (statistics) |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5549924373626709 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5350580811500549 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C41608201 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5106897950172424 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[6].display_name | Embedding |
| concepts[7].id | https://openalex.org/C2776145971 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47777068614959717 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[7].display_name | Labeled data |
| concepts[8].id | https://openalex.org/C51632099 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4527584910392761 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[8].display_name | Training set |
| concepts[9].id | https://openalex.org/C48145219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4298044443130493 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1335365 |
| concepts[9].display_name | Security token |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35456663370132446 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09559935331344604 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C38652104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[12].display_name | Computer security |
| concepts[13].id | https://openalex.org/C119599485 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[13].display_name | Electrical engineering |
| concepts[14].id | https://openalex.org/C165801399 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[14].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7186020612716675 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6330031156539917 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/transformer |
| keywords[2].score | 0.5722977519035339 |
| keywords[2].display_name | Transformer |
| keywords[3].id | https://openalex.org/keywords/leverage |
| keywords[3].score | 0.5593085885047913 |
| keywords[3].display_name | Leverage (statistics) |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5549924373626709 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5350580811500549 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/embedding |
| keywords[6].score | 0.5106897950172424 |
| keywords[6].display_name | Embedding |
| keywords[7].id | https://openalex.org/keywords/labeled-data |
| keywords[7].score | 0.47777068614959717 |
| keywords[7].display_name | Labeled data |
| keywords[8].id | https://openalex.org/keywords/training-set |
| keywords[8].score | 0.4527584910392761 |
| keywords[8].display_name | Training set |
| keywords[9].id | https://openalex.org/keywords/security-token |
| keywords[9].score | 0.4298044443130493 |
| keywords[9].display_name | Security token |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.35456663370132446 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.09559935331344604 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/tnsre.2024.3434343 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S98183460 |
| locations[0].source.issn | 1534-4320, 1558-0210 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1534-4320 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| locations[0].landing_page_url | https://doi.org/10.1109/tnsre.2024.3434343 |
| locations[1].id | pmid:39074019 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39074019 |
| locations[2].id | pmh:oai:doaj.org/article:5d3d905d8d3e48839b77f8130ae9866b |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 32, Pp 2727-2736 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/5d3d905d8d3e48839b77f8130ae9866b |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5042282783 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3602-7603 |
| authorships[0].author.display_name | Jinlong Hu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[0].affiliations[0].raw_affiliation_string | Guangdong Key Laboratory of Communication and Computer Network, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I90610280 |
| authorships[0].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | South China University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jinlong Hu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guangdong Key Laboratory of Communication and Computer Network, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[1].author.id | https://openalex.org/A5102600726 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1161-998X |
| authorships[1].author.display_name | Yangmin Huang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[1].affiliations[0].raw_affiliation_string | Guangdong Key Laboratory of Communication and Computer Network, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I90610280 |
| authorships[1].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | South China University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yangmin Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Guangdong Key Laboratory of Communication and Computer Network, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[2].author.id | https://openalex.org/A5100332791 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2297-0000 |
| authorships[2].author.display_name | Nan Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143593769 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I66867065 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Computer Science and Technology, East China Normal University, Shanghai, China |
| authorships[2].institutions[0].id | https://openalex.org/I66867065 |
| authorships[2].institutions[0].ror | https://ror.org/02n96ep67 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I66867065 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | East China Normal University |
| authorships[2].institutions[1].id | https://openalex.org/I143593769 |
| authorships[2].institutions[1].ror | https://ror.org/01vyrm377 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I143593769 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | East China University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nan Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Technology, East China Normal University, Shanghai, China, School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China |
| authorships[3].author.id | https://openalex.org/A5052760299 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0153-850X |
| authorships[3].author.display_name | Shoubin Dong |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[3].affiliations[0].raw_affiliation_string | Guangdong Key Laboratory of Communication and Computer Network, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I90610280 |
| authorships[3].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | South China University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shoubin Dong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Guangdong Key Laboratory of Communication and Computer Network, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/tnsre.2024.3434343 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | BrainNPT: Pre-Training Transformer Networks for Brain Network Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9932000041007996 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W2129767422, https://openalex.org/W3210196349, https://openalex.org/W4214728004, https://openalex.org/W2950181282, https://openalex.org/W4372259861, https://openalex.org/W2798287483, https://openalex.org/W4309128991, https://openalex.org/W2913410650, https://openalex.org/W2130553454, https://openalex.org/W3022007134 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1109/tnsre.2024.3434343 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S98183460 |
| best_oa_location.source.issn | 1534-4320, 1558-0210 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1534-4320 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1109/tnsre.2024.3434343 |
| primary_location.id | doi:10.1109/tnsre.2024.3434343 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S98183460 |
| primary_location.source.issn | 1534-4320, 1558-0210 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1534-4320 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| primary_location.landing_page_url | https://doi.org/10.1109/tnsre.2024.3434343 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2963303578, https://openalex.org/W3095114157, https://openalex.org/W3207511726, https://openalex.org/W3199008037, https://openalex.org/W3183761761, https://openalex.org/W3039011740, https://openalex.org/W2965774812, https://openalex.org/W4296217498, https://openalex.org/W6838252289, https://openalex.org/W4385245566, https://openalex.org/W6755207826, https://openalex.org/W6772776185, https://openalex.org/W6784614190, https://openalex.org/W6796663048, https://openalex.org/W6804049574, https://openalex.org/W6810465265, https://openalex.org/W6811246986, https://openalex.org/W4281706128, https://openalex.org/W6846041338, https://openalex.org/W6795062860, https://openalex.org/W3145450063, https://openalex.org/W4320024280, https://openalex.org/W3094502228, https://openalex.org/W3138516171, https://openalex.org/W2952370363, https://openalex.org/W2965373594, https://openalex.org/W6769627184, https://openalex.org/W6771917389, https://openalex.org/W3080997787, https://openalex.org/W2590651237, https://openalex.org/W2921224201, https://openalex.org/W4307847583, https://openalex.org/W6761665040, https://openalex.org/W6690815549, https://openalex.org/W3133264589, https://openalex.org/W6755977528, https://openalex.org/W2147546041, https://openalex.org/W3173787059, https://openalex.org/W3176196997, https://openalex.org/W2195388612, https://openalex.org/W2314945771, https://openalex.org/W3184298244, https://openalex.org/W2057550180, https://openalex.org/W2964015378, https://openalex.org/W6738964360, https://openalex.org/W6754929296, https://openalex.org/W6753331806, https://openalex.org/W2526511911, https://openalex.org/W4376121360, https://openalex.org/W6796801894, https://openalex.org/W6760045743, https://openalex.org/W6757817989, https://openalex.org/W6795171876, https://openalex.org/W2024729467, https://openalex.org/W2167868121, https://openalex.org/W1714729838, https://openalex.org/W4389513461, https://openalex.org/W4313229732, https://openalex.org/W2058046532, https://openalex.org/W2094304570, https://openalex.org/W2984003291, https://openalex.org/W2134248637, https://openalex.org/W4210708461, https://openalex.org/W4247971694, https://openalex.org/W2141273499, https://openalex.org/W2158200838 |
| referenced_works_count | 66 |
| abstract_inverted_index.a | 78, 97, 116 |
| abstract_inverted_index.In | 54 |
| abstract_inverted_index.We | 181 |
| abstract_inverted_index.as | 41, 83, 96 |
| abstract_inverted_index.by | 20 |
| abstract_inverted_index.in | 6, 34, 37, 50 |
| abstract_inverted_index.is | 48 |
| abstract_inverted_index.of | 110, 133, 139, 173, 195, 198 |
| abstract_inverted_index.on | 27, 59 |
| abstract_inverted_index.to | 65, 105, 122, 128 |
| abstract_inverted_index.we | 57, 76, 114 |
| abstract_inverted_index.The | 90, 137, 167 |
| abstract_inverted_index.and | 156, 187, 201 |
| abstract_inverted_index.are | 17 |
| abstract_inverted_index.but | 15 |
| abstract_inverted_index.few | 13 |
| abstract_inverted_index.for | 70, 85, 101, 119 |
| abstract_inverted_index.has | 30 |
| abstract_inverted_index.the | 11, 21, 102, 108, 130, 143, 149, 153, 157, 164, 177, 184, 188, 193, 196, 199, 203 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.best | 150 |
| abstract_inverted_index.data | 29, 69, 127, 189 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.many | 38 |
| abstract_inverted_index.over | 10 |
| abstract_inverted_index.past | 12 |
| abstract_inverted_index.such | 40 |
| abstract_inverted_index.they | 16 |
| abstract_inverted_index.this | 46, 55 |
| abstract_inverted_index.with | 62, 152, 160, 176 |
| abstract_inverted_index.8.75% | 172 |
| abstract_inverted_index.<cls> | 94 |
| abstract_inverted_index.brain | 7, 51, 71, 86, 111, 125, 134 |
| abstract_inverted_index.data. | 24 |
| abstract_inverted_index.learn | 129 |
| abstract_inverted_index.model | 26, 104, 121, 145, 159, 170, 178 |
| abstract_inverted_index.named | 82 |
| abstract_inverted_index.token | 95 |
| abstract_inverted_index.First, | 75 |
| abstract_inverted_index.method | 92 |
| abstract_inverted_index.model, | 200 |
| abstract_inverted_index.model. | 205 |
| abstract_inverted_index.neural | 80 |
| abstract_inverted_index.paper, | 56 |
| abstract_inverted_index.vector | 100 |
| abstract_inverted_index.years, | 14 |
| abstract_inverted_index.Second, | 113 |
| abstract_inverted_index.capture | 107 |
| abstract_inverted_index.feature | 35 |
| abstract_inverted_index.focused | 58 |
| abstract_inverted_index.further | 182 |
| abstract_inverted_index.imaging | 8 |
| abstract_inverted_index.labeled | 23 |
| abstract_inverted_index.limited | 22 |
| abstract_inverted_index.methods | 2, 61 |
| abstract_inverted_index.models, | 155 |
| abstract_inverted_index.models. | 166 |
| abstract_inverted_index.natural | 42 |
| abstract_inverted_index.network | 52, 73, 88, 126 |
| abstract_inverted_index.quickly | 5 |
| abstract_inverted_index.results | 138 |
| abstract_inverted_index.trained | 204 |
| abstract_inverted_index.usually | 18 |
| abstract_inverted_index.without | 146, 179 |
| abstract_inverted_index.BrainNPT | 120, 144, 158, 169 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.accuracy | 174 |
| abstract_inverted_index.achieved | 148 |
| abstract_inverted_index.advanced | 4 |
| abstract_inverted_index.analysis | 9 |
| abstract_inverted_index.analyzed | 192 |
| abstract_inverted_index.compared | 175, 183 |
| abstract_inverted_index.domains, | 39 |
| abstract_inverted_index.existing | 67 |
| abstract_inverted_index.improved | 171 |
| abstract_inverted_index.language | 43 |
| abstract_inverted_index.learning | 1, 36 |
| abstract_inverted_index.leverage | 66, 123 |
| abstract_inverted_index.methods, | 191 |
| abstract_inverted_index.network, | 81 |
| abstract_inverted_index.networks | 64 |
| abstract_inverted_index.proposed | 77, 91, 115 |
| abstract_inverted_index.strongly | 162 |
| abstract_inverted_index.BrainNPT, | 84 |
| abstract_inverted_index.analysis. | 53 |
| abstract_inverted_index.embedding | 99 |
| abstract_inverted_index.explained | 202 |
| abstract_inverted_index.framework | 118 |
| abstract_inverted_index.influence | 194 |
| abstract_inverted_index.leveraged | 93 |
| abstract_inverted_index.networks. | 112, 136 |
| abstract_inverted_index.presented | 31 |
| abstract_inverted_index.promising | 32 |
| abstract_inverted_index.structure | 131 |
| abstract_inverted_index.technique | 47 |
| abstract_inverted_index.unlabeled | 28, 68, 124 |
| abstract_inverted_index.functional | 72, 87, 135 |
| abstract_inverted_index.parameters | 197 |
| abstract_inverted_index.restricted | 19 |
| abstract_inverted_index.strategies | 186 |
| abstract_inverted_index.Pre-trained | 25 |
| abstract_inverted_index.Transformer | 63, 103 |
| abstract_inverted_index.effectively | 106 |
| abstract_inverted_index.experiments | 141 |
| abstract_inverted_index.improvement | 33 |
| abstract_inverted_index.information | 132 |
| abstract_inverted_index.performance | 151 |
| abstract_inverted_index.processing. | 44 |
| abstract_inverted_index.augmentation | 190 |
| abstract_inverted_index.demonstrated | 142 |
| abstract_inverted_index.outperformed | 163 |
| abstract_inverted_index.pre-training | 60, 117, 147, 161, 168, 185 |
| abstract_inverted_index.pre-training. | 180 |
| abstract_inverted_index.classification | 98, 140 |
| abstract_inverted_index.representation | 109 |
| abstract_inverted_index.under-explored | 49 |
| abstract_inverted_index.classification. | 74, 89 |
| abstract_inverted_index.state-of-the-art | 154, 165 |
| abstract_inverted_index.Transformer-based | 79 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.93496953 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |