Brain–phenotype models fail for individuals who defy sample stereotypes Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1038/s41586-022-05118-w
Individual differences in brain functional organization track a range of traits, symptoms and behaviours 1–12 . So far, work modelling linear brain–phenotype relationships has assumed that a single such relationship generalizes across all individuals, but models do not work equally well in all participants 13,14 . A better understanding of in whom models fail and why is crucial to revealing robust, useful and unbiased brain–phenotype relationships. To this end, here we related brain activity to phenotype using predictive models—trained and tested on independent data to ensure generalizability 15 —and examined model failure. We applied this data-driven approach to a range of neurocognitive measures in a new, clinically and demographically heterogeneous dataset, with the results replicated in two independent, publicly available datasets 16,17 . Across all three datasets, we find that models reflect not unitary cognitive constructs, but rather neurocognitive scores intertwined with sociodemographic and clinical covariates; that is, models reflect stereotypical profiles, and fail when applied to individuals who defy them. Model failure is reliable, phenotype specific and generalizable across datasets. Together, these results highlight the pitfalls of a one-size-fits-all modelling approach and the effect of biased phenotypic measures 18–20 on the interpretation and utility of resulting brain–phenotype models. We present a framework to address these issues so that such models may reveal the neural circuits that underlie specific phenotypes and ultimately identify individualized neural targets for clinical intervention.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41586-022-05118-w
- https://www.nature.com/articles/s41586-022-05118-w.pdf
- OA Status
- hybrid
- Cited By
- 152
- References
- 140
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293004881
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293004881Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41586-022-05118-wDigital Object Identifier
- Title
-
Brain–phenotype models fail for individuals who defy sample stereotypesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-24Full publication date if available
- Authors
-
Abigail S. Greene, Xilin Shen, Stephanie Noble, Corey Horien, Changtae Hahn, Jagriti Arora, Fuyuze Tokoglu, Marisa N. Spann, Carmen I. Carrión, Daniel S. Barron, Gerard Sanacora, Vinod H. Srihari, Scott W. Woods, Dustin Scheinost, R. Todd ConstableList of authors in order
- Landing page
-
https://doi.org/10.1038/s41586-022-05118-wPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41586-022-05118-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41586-022-05118-w.pdfDirect OA link when available
- Concepts
-
Generalizability theory, Neurocognitive, Phenotype, Covariate, Psychology, Neuroimaging, Cognition, Cognitive psychology, Computer science, Machine learning, Neuroscience, Developmental psychology, Biology, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
152Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 34, 2024: 66, 2023: 40, 2022: 11, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
140Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293004881 |
|---|---|
| doi | https://doi.org/10.1038/s41586-022-05118-w |
| ids.doi | https://doi.org/10.1038/s41586-022-05118-w |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36002572 |
| ids.openalex | https://openalex.org/W4293004881 |
| fwci | 24.23865786 |
| mesh[0].qualifier_ui | Q000033 |
| mesh[0].descriptor_ui | D001921 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | anatomy & histology |
| mesh[0].descriptor_name | Brain |
| mesh[1].qualifier_ui | Q000502 |
| mesh[1].descriptor_ui | D001921 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | physiology |
| mesh[1].descriptor_name | Brain |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D003198 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Computer Simulation |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D066264 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Datasets as Topic |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D007206 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Individuality |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000073216 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Mental Status and Dementia Tests |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D008954 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Models, Biological |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D010641 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Phenotype |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D013240 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Stereotyping |
| mesh[10].qualifier_ui | Q000033 |
| mesh[10].descriptor_ui | D001921 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | anatomy & histology |
| mesh[10].descriptor_name | Brain |
| mesh[11].qualifier_ui | Q000502 |
| mesh[11].descriptor_ui | D001921 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | physiology |
| mesh[11].descriptor_name | Brain |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D003198 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Computer Simulation |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D066264 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Datasets as Topic |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D007206 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Individuality |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000073216 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Mental Status and Dementia Tests |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D008954 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Models, Biological |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D010641 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Phenotype |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D013240 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Stereotyping |
| mesh[20].qualifier_ui | Q000033 |
| mesh[20].descriptor_ui | D001921 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | anatomy & histology |
| mesh[20].descriptor_name | Brain |
| mesh[21].qualifier_ui | Q000502 |
| mesh[21].descriptor_ui | D001921 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | physiology |
| mesh[21].descriptor_name | Brain |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D003198 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Computer Simulation |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D066264 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Datasets as Topic |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D006801 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Humans |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D007206 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Individuality |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000073216 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Mental Status and Dementia Tests |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D008954 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Models, Biological |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D010641 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Phenotype |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D013240 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Stereotyping |
| type | article |
| title | Brain–phenotype models fail for individuals who defy sample stereotypes |
| biblio.issue | 7925 |
| biblio.volume | 609 |
| biblio.last_page | 118 |
| biblio.first_page | 109 |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T13283 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Mental Health Research Topics |
| topics[2].id | https://openalex.org/T14393 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9944999814033508 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2307 |
| topics[2].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[2].display_name | Health, Environment, Cognitive Aging |
| is_xpac | False |
| apc_list.value | 9750 |
| apc_list.currency | EUR |
| apc_list.value_usd | 11690 |
| apc_paid.value | 9750 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 11690 |
| concepts[0].id | https://openalex.org/C27158222 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7696325778961182 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[0].display_name | Generalizability theory |
| concepts[1].id | https://openalex.org/C172467417 |
| concepts[1].level | 3 |
| concepts[1].score | 0.680526852607727 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1670397 |
| concepts[1].display_name | Neurocognitive |
| concepts[2].id | https://openalex.org/C127716648 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5562275052070618 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q104053 |
| concepts[2].display_name | Phenotype |
| concepts[3].id | https://openalex.org/C119043178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5051873326301575 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q320723 |
| concepts[3].display_name | Covariate |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.47360873222351074 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| concepts[5].id | https://openalex.org/C58693492 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46352487802505493 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q551875 |
| concepts[5].display_name | Neuroimaging |
| concepts[6].id | https://openalex.org/C169900460 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4367069602012634 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[6].display_name | Cognition |
| concepts[7].id | https://openalex.org/C180747234 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4131726026535034 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[7].display_name | Cognitive psychology |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.35794398188591003 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3283211886882782 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2836459279060364 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| concepts[11].id | https://openalex.org/C138496976 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2010449767112732 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q175002 |
| concepts[11].display_name | Developmental psychology |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.19191426038742065 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/generalizability-theory |
| keywords[0].score | 0.7696325778961182 |
| keywords[0].display_name | Generalizability theory |
| keywords[1].id | https://openalex.org/keywords/neurocognitive |
| keywords[1].score | 0.680526852607727 |
| keywords[1].display_name | Neurocognitive |
| keywords[2].id | https://openalex.org/keywords/phenotype |
| keywords[2].score | 0.5562275052070618 |
| keywords[2].display_name | Phenotype |
| keywords[3].id | https://openalex.org/keywords/covariate |
| keywords[3].score | 0.5051873326301575 |
| keywords[3].display_name | Covariate |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.47360873222351074 |
| keywords[4].display_name | Psychology |
| keywords[5].id | https://openalex.org/keywords/neuroimaging |
| keywords[5].score | 0.46352487802505493 |
| keywords[5].display_name | Neuroimaging |
| keywords[6].id | https://openalex.org/keywords/cognition |
| keywords[6].score | 0.4367069602012634 |
| keywords[6].display_name | Cognition |
| keywords[7].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[7].score | 0.4131726026535034 |
| keywords[7].display_name | Cognitive psychology |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.35794398188591003 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3283211886882782 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/neuroscience |
| keywords[10].score | 0.2836459279060364 |
| keywords[10].display_name | Neuroscience |
| keywords[11].id | https://openalex.org/keywords/developmental-psychology |
| keywords[11].score | 0.2010449767112732 |
| keywords[11].display_name | Developmental psychology |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.19191426038742065 |
| keywords[12].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1038/s41586-022-05118-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S137773608 |
| locations[0].source.issn | 0028-0836, 1476-4687 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0028-0836 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Nature |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41586-022-05118-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Nature |
| locations[0].landing_page_url | https://doi.org/10.1038/s41586-022-05118-w |
| locations[1].id | pmid:36002572 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Nature |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36002572 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9433326 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Nature |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9433326 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5084520677 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6011-7903 |
| authorships[0].author.display_name | Abigail S. Greene |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[0].affiliations[0].raw_affiliation_string | Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA |
| authorships[0].institutions[0].id | https://openalex.org/I32971472 |
| authorships[0].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Yale University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abigail S. Greene |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA |
| authorships[1].author.id | https://openalex.org/A5084684839 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1006-7404 |
| authorships[1].author.display_name | Xilin Shen |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[1].affiliations[0].raw_affiliation_string | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[1].institutions[0].id | https://openalex.org/I32971472 |
| authorships[1].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Yale University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xilin Shen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[2].author.id | https://openalex.org/A5042339320 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4804-5553 |
| authorships[2].author.display_name | Stephanie Noble |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[2].affiliations[0].raw_affiliation_string | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[2].institutions[0].id | https://openalex.org/I32971472 |
| authorships[2].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Yale University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stephanie Noble |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[3].author.id | https://openalex.org/A5075094189 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6738-1029 |
| authorships[3].author.display_name | Corey Horien |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[3].affiliations[0].raw_affiliation_string | MD–PhD program, Yale School of Medicine, New Haven, CT, USA |
| authorships[3].institutions[0].id | https://openalex.org/I32971472 |
| authorships[3].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Yale University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Corey Horien |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | MD–PhD program, Yale School of Medicine, New Haven, CT, USA |
| authorships[4].author.id | https://openalex.org/A5089381071 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0489-7148 |
| authorships[4].author.display_name | Changtae Hahn |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[4].affiliations[0].raw_affiliation_string | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[4].institutions[0].id | https://openalex.org/I32971472 |
| authorships[4].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Yale University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | C. Alice Hahn |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[5].author.id | https://openalex.org/A5087045398 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jagriti Arora |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[5].affiliations[0].raw_affiliation_string | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[5].institutions[0].id | https://openalex.org/I32971472 |
| authorships[5].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Yale University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jagriti Arora |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[6].author.id | https://openalex.org/A5061926055 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Fuyuze Tokoglu |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[6].affiliations[0].raw_affiliation_string | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[6].institutions[0].id | https://openalex.org/I32971472 |
| authorships[6].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Yale University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Fuyuze Tokoglu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[7].author.id | https://openalex.org/A5058225175 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6162-9521 |
| authorships[7].author.display_name | Marisa N. Spann |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I2799503643 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA |
| authorships[7].institutions[0].id | https://openalex.org/I2799503643 |
| authorships[7].institutions[0].ror | https://ror.org/01esghr10 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I2799503643 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Columbia University Irving Medical Center |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Marisa N. Spann |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA |
| authorships[8].author.id | https://openalex.org/A5022246357 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-7981-9793 |
| authorships[8].author.display_name | Carmen I. Carrión |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Neurology, Yale School of Medicine, New Haven, CT, USA |
| authorships[8].institutions[0].id | https://openalex.org/I32971472 |
| authorships[8].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Yale University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Carmen I. Carrión |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Neurology, Yale School of Medicine, New Haven, CT, USA |
| authorships[9].author.id | https://openalex.org/A5044840098 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-0686-6337 |
| authorships[9].author.display_name | Daniel S. Barron |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA |
| authorships[9].institutions[0].id | https://openalex.org/I201448701 |
| authorships[9].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | University of Washington |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Daniel S. Barron |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA |
| authorships[10].author.id | https://openalex.org/A5037185919 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-3722-8829 |
| authorships[10].author.display_name | Gerard Sanacora |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA |
| authorships[10].institutions[0].id | https://openalex.org/I32971472 |
| authorships[10].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Yale University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Gerard Sanacora |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA |
| authorships[11].author.id | https://openalex.org/A5023116447 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-1556-2332 |
| authorships[11].author.display_name | Vinod H. Srihari |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA |
| authorships[11].institutions[0].id | https://openalex.org/I32971472 |
| authorships[11].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Yale University |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Vinod H. Srihari |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA |
| authorships[12].author.id | https://openalex.org/A5073531380 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-3103-5228 |
| authorships[12].author.display_name | Scott W. Woods |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[12].affiliations[0].raw_affiliation_string | Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA |
| authorships[12].institutions[0].id | https://openalex.org/I32971472 |
| authorships[12].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | Yale University |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Scott W. Woods |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA |
| authorships[13].author.id | https://openalex.org/A5032271246 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-6301-1167 |
| authorships[13].author.display_name | Dustin Scheinost |
| authorships[13].countries | US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[13].affiliations[0].raw_affiliation_string | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[13].institutions[0].id | https://openalex.org/I32971472 |
| authorships[13].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[13].institutions[0].type | education |
| authorships[13].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | Yale University |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Dustin Scheinost |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[14].author.id | https://openalex.org/A5079635112 |
| authorships[14].author.orcid | https://orcid.org/0000-0001-5661-9521 |
| authorships[14].author.display_name | R. Todd Constable |
| authorships[14].countries | US |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[14].affiliations[0].raw_affiliation_string | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| authorships[14].institutions[0].id | https://openalex.org/I32971472 |
| authorships[14].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[14].institutions[0].type | education |
| authorships[14].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[14].institutions[0].country_code | US |
| authorships[14].institutions[0].display_name | Yale University |
| authorships[14].author_position | last |
| authorships[14].raw_author_name | R. Todd Constable |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41586-022-05118-w.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Brain–phenotype models fail for individuals who defy sample stereotypes |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W2118717649, https://openalex.org/W2413243053, https://openalex.org/W410723623, https://openalex.org/W2015341305, https://openalex.org/W2035068594, https://openalex.org/W4225593417, https://openalex.org/W2573498121, https://openalex.org/W3022298670, https://openalex.org/W3160494304, https://openalex.org/W3006162251 |
| cited_by_count | 152 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 34 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 66 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 40 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 11 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1038/s41586-022-05118-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S137773608 |
| best_oa_location.source.issn | 0028-0836, 1476-4687 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0028-0836 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Nature |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41586-022-05118-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Nature |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41586-022-05118-w |
| primary_location.id | doi:10.1038/s41586-022-05118-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S137773608 |
| primary_location.source.issn | 0028-0836, 1476-4687 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0028-0836 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Nature |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41586-022-05118-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Nature |
| primary_location.landing_page_url | https://doi.org/10.1038/s41586-022-05118-w |
| publication_date | 2022-08-24 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2111902267, https://openalex.org/W2791781046, https://openalex.org/W3094273036, https://openalex.org/W3097771420, https://openalex.org/W2560565629, https://openalex.org/W2791304632, https://openalex.org/W2174056659, https://openalex.org/W2982366834, https://openalex.org/W3171113194, https://openalex.org/W3114072530, https://openalex.org/W4245057219, https://openalex.org/W6826316612, https://openalex.org/W2904440045, https://openalex.org/W2969155561, https://openalex.org/W2766963537, https://openalex.org/W2284729062, https://openalex.org/W4220992429, https://openalex.org/W2920509382, https://openalex.org/W2024729467, https://openalex.org/W2427924351, https://openalex.org/W2952766316, https://openalex.org/W2613333433, https://openalex.org/W2013721744, https://openalex.org/W2775460983, https://openalex.org/W1965445933, https://openalex.org/W3048710731, https://openalex.org/W2808831456, https://openalex.org/W2836420707, https://openalex.org/W2587272693, https://openalex.org/W3168831687, https://openalex.org/W4220838968, https://openalex.org/W2989261235, https://openalex.org/W2963500222, https://openalex.org/W3148725809, https://openalex.org/W2165980097, https://openalex.org/W3033733989, https://openalex.org/W1978642336, https://openalex.org/W4288328891, https://openalex.org/W2785011159, https://openalex.org/W3119527628, https://openalex.org/W3136933888, https://openalex.org/W2981869278, https://openalex.org/W2085876742, https://openalex.org/W2126693856, https://openalex.org/W1606491053, https://openalex.org/W2803889471, https://openalex.org/W2953062348, https://openalex.org/W2099267485, https://openalex.org/W3023876545, https://openalex.org/W2963227744, https://openalex.org/W1999494998, https://openalex.org/W4293004559, https://openalex.org/W2767261128, https://openalex.org/W2580744997, https://openalex.org/W2116029803, https://openalex.org/W3041358984, https://openalex.org/W2120540825, https://openalex.org/W3185425351, https://openalex.org/W2025175823, https://openalex.org/W2104470097, https://openalex.org/W3137188864, https://openalex.org/W2794251999, https://openalex.org/W2599377479, https://openalex.org/W2062273356, https://openalex.org/W2061924563, https://openalex.org/W3125293084, https://openalex.org/W2907554860, https://openalex.org/W2114629989, https://openalex.org/W2779114066, https://openalex.org/W3012084257, https://openalex.org/W3033423750, https://openalex.org/W2207644610, https://openalex.org/W3049771035, https://openalex.org/W3117111924, https://openalex.org/W4212883601, https://openalex.org/W2013293845, https://openalex.org/W2807683509, https://openalex.org/W2963389298, https://openalex.org/W1977465442, https://openalex.org/W4294214781, https://openalex.org/W2985741994, https://openalex.org/W2078805086, https://openalex.org/W1968867925, https://openalex.org/W2803980637, https://openalex.org/W2098958400, https://openalex.org/W2054333577, https://openalex.org/W1952680005, https://openalex.org/W2041010700, https://openalex.org/W2086094798, https://openalex.org/W2136022845, https://openalex.org/W1980083892, https://openalex.org/W2043358844, https://openalex.org/W1996299251, https://openalex.org/W2151487996, https://openalex.org/W1983382331, https://openalex.org/W4205104973, https://openalex.org/W2786198454, https://openalex.org/W2808004150, https://openalex.org/W7074234824, https://openalex.org/W1965023993, https://openalex.org/W2006096283, https://openalex.org/W2085641953, https://openalex.org/W1965212122, https://openalex.org/W2007318901, https://openalex.org/W2082695959, https://openalex.org/W6671135148, https://openalex.org/W3097356937, https://openalex.org/W2002389556, https://openalex.org/W4296295377, https://openalex.org/W6842842768, https://openalex.org/W1993053013, https://openalex.org/W2096672020, https://openalex.org/W6674404151, https://openalex.org/W2071608556, https://openalex.org/W1983208069, https://openalex.org/W2085561705, https://openalex.org/W4295750005, https://openalex.org/W2951042025, https://openalex.org/W3005983159, https://openalex.org/W2062078646, https://openalex.org/W2913527682, https://openalex.org/W2415743250, https://openalex.org/W2915941435, https://openalex.org/W3080643742, https://openalex.org/W2884928685, https://openalex.org/W2952824318, https://openalex.org/W3036426713, https://openalex.org/W2944504803, https://openalex.org/W2969609604, https://openalex.org/W2158273261, https://openalex.org/W2132175842, https://openalex.org/W1990134753, https://openalex.org/W2756187761, https://openalex.org/W186156187, https://openalex.org/W1685257228, https://openalex.org/W2067456724, https://openalex.org/W3089879182, https://openalex.org/W2245231029, https://openalex.org/W2140205353, https://openalex.org/W2119637750 |
| referenced_works_count | 140 |
| abstract_inverted_index.. | 16, 46, 123 |
| abstract_inverted_index.A | 47 |
| abstract_inverted_index.a | 8, 27, 99, 105, 179, 202 |
| abstract_inverted_index.15 | 88 |
| abstract_inverted_index.So | 17 |
| abstract_inverted_index.To | 67 |
| abstract_inverted_index.We | 93, 200 |
| abstract_inverted_index.do | 37 |
| abstract_inverted_index.in | 3, 42, 51, 104, 116 |
| abstract_inverted_index.is | 57, 164 |
| abstract_inverted_index.of | 10, 50, 101, 178, 186, 196 |
| abstract_inverted_index.on | 82, 191 |
| abstract_inverted_index.so | 208 |
| abstract_inverted_index.to | 59, 75, 85, 98, 157, 204 |
| abstract_inverted_index.we | 71, 128 |
| abstract_inverted_index.all | 33, 43, 125 |
| abstract_inverted_index.and | 13, 55, 63, 80, 108, 144, 153, 168, 183, 194, 221 |
| abstract_inverted_index.but | 35, 137 |
| abstract_inverted_index.for | 227 |
| abstract_inverted_index.has | 24 |
| abstract_inverted_index.is, | 148 |
| abstract_inverted_index.may | 212 |
| abstract_inverted_index.not | 38, 133 |
| abstract_inverted_index.the | 113, 176, 184, 192, 214 |
| abstract_inverted_index.two | 117 |
| abstract_inverted_index.who | 159 |
| abstract_inverted_index.why | 56 |
| abstract_inverted_index.data | 84 |
| abstract_inverted_index.defy | 160 |
| abstract_inverted_index.end, | 69 |
| abstract_inverted_index.fail | 54, 154 |
| abstract_inverted_index.far, | 18 |
| abstract_inverted_index.find | 129 |
| abstract_inverted_index.here | 70 |
| abstract_inverted_index.new, | 106 |
| abstract_inverted_index.such | 29, 210 |
| abstract_inverted_index.that | 26, 130, 147, 209, 217 |
| abstract_inverted_index.this | 68, 95 |
| abstract_inverted_index.well | 41 |
| abstract_inverted_index.when | 155 |
| abstract_inverted_index.whom | 52 |
| abstract_inverted_index.with | 112, 142 |
| abstract_inverted_index.work | 19, 39 |
| abstract_inverted_index.13,14 | 45 |
| abstract_inverted_index.16,17 | 122 |
| abstract_inverted_index.Model | 162 |
| abstract_inverted_index.brain | 4, 73 |
| abstract_inverted_index.model | 91 |
| abstract_inverted_index.range | 9, 100 |
| abstract_inverted_index.them. | 161 |
| abstract_inverted_index.these | 173, 206 |
| abstract_inverted_index.three | 126 |
| abstract_inverted_index.track | 7 |
| abstract_inverted_index.using | 77 |
| abstract_inverted_index.1–12 | 15 |
| abstract_inverted_index.Across | 124 |
| abstract_inverted_index.across | 32, 170 |
| abstract_inverted_index.better | 48 |
| abstract_inverted_index.biased | 187 |
| abstract_inverted_index.effect | 185 |
| abstract_inverted_index.ensure | 86 |
| abstract_inverted_index.issues | 207 |
| abstract_inverted_index.linear | 21 |
| abstract_inverted_index.models | 36, 53, 131, 149, 211 |
| abstract_inverted_index.neural | 215, 225 |
| abstract_inverted_index.rather | 138 |
| abstract_inverted_index.reveal | 213 |
| abstract_inverted_index.scores | 140 |
| abstract_inverted_index.single | 28 |
| abstract_inverted_index.tested | 81 |
| abstract_inverted_index.useful | 62 |
| abstract_inverted_index.—and | 89 |
| abstract_inverted_index.18–20 | 190 |
| abstract_inverted_index.address | 205 |
| abstract_inverted_index.applied | 94, 156 |
| abstract_inverted_index.assumed | 25 |
| abstract_inverted_index.crucial | 58 |
| abstract_inverted_index.equally | 40 |
| abstract_inverted_index.failure | 163 |
| abstract_inverted_index.models. | 199 |
| abstract_inverted_index.present | 201 |
| abstract_inverted_index.reflect | 132, 150 |
| abstract_inverted_index.related | 72 |
| abstract_inverted_index.results | 114, 174 |
| abstract_inverted_index.robust, | 61 |
| abstract_inverted_index.targets | 226 |
| abstract_inverted_index.traits, | 11 |
| abstract_inverted_index.unitary | 134 |
| abstract_inverted_index.utility | 195 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.activity | 74 |
| abstract_inverted_index.approach | 97, 182 |
| abstract_inverted_index.circuits | 216 |
| abstract_inverted_index.clinical | 145, 228 |
| abstract_inverted_index.dataset, | 111 |
| abstract_inverted_index.datasets | 121 |
| abstract_inverted_index.examined | 90 |
| abstract_inverted_index.failure. | 92 |
| abstract_inverted_index.identify | 223 |
| abstract_inverted_index.measures | 103, 189 |
| abstract_inverted_index.pitfalls | 177 |
| abstract_inverted_index.publicly | 119 |
| abstract_inverted_index.specific | 167, 219 |
| abstract_inverted_index.symptoms | 12 |
| abstract_inverted_index.unbiased | 64 |
| abstract_inverted_index.underlie | 218 |
| abstract_inverted_index.Together, | 172 |
| abstract_inverted_index.available | 120 |
| abstract_inverted_index.cognitive | 135 |
| abstract_inverted_index.datasets, | 127 |
| abstract_inverted_index.datasets. | 171 |
| abstract_inverted_index.framework | 203 |
| abstract_inverted_index.highlight | 175 |
| abstract_inverted_index.modelling | 20, 181 |
| abstract_inverted_index.phenotype | 76, 166 |
| abstract_inverted_index.profiles, | 152 |
| abstract_inverted_index.reliable, | 165 |
| abstract_inverted_index.resulting | 197 |
| abstract_inverted_index.revealing | 60 |
| abstract_inverted_index.Individual | 1 |
| abstract_inverted_index.behaviours | 14 |
| abstract_inverted_index.clinically | 107 |
| abstract_inverted_index.functional | 5 |
| abstract_inverted_index.phenotypes | 220 |
| abstract_inverted_index.phenotypic | 188 |
| abstract_inverted_index.predictive | 78 |
| abstract_inverted_index.replicated | 115 |
| abstract_inverted_index.ultimately | 222 |
| abstract_inverted_index.constructs, | 136 |
| abstract_inverted_index.covariates; | 146 |
| abstract_inverted_index.data-driven | 96 |
| abstract_inverted_index.differences | 2 |
| abstract_inverted_index.generalizes | 31 |
| abstract_inverted_index.independent | 83 |
| abstract_inverted_index.individuals | 158 |
| abstract_inverted_index.intertwined | 141 |
| abstract_inverted_index.independent, | 118 |
| abstract_inverted_index.individuals, | 34 |
| abstract_inverted_index.organization | 6 |
| abstract_inverted_index.participants | 44 |
| abstract_inverted_index.relationship | 30 |
| abstract_inverted_index.generalizable | 169 |
| abstract_inverted_index.heterogeneous | 110 |
| abstract_inverted_index.intervention. | 229 |
| abstract_inverted_index.relationships | 23 |
| abstract_inverted_index.stereotypical | 151 |
| abstract_inverted_index.understanding | 49 |
| abstract_inverted_index.individualized | 224 |
| abstract_inverted_index.interpretation | 193 |
| abstract_inverted_index.neurocognitive | 102, 139 |
| abstract_inverted_index.relationships. | 66 |
| abstract_inverted_index.demographically | 109 |
| abstract_inverted_index.generalizability | 87 |
| abstract_inverted_index.models—trained | 79 |
| abstract_inverted_index.sociodemographic | 143 |
| abstract_inverted_index.brain–phenotype | 22, 65, 198 |
| abstract_inverted_index.one-size-fits-all | 180 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5084520677 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 15 |
| corresponding_institution_ids | https://openalex.org/I32971472 |
| citation_normalized_percentile.value | 0.99770166 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |