BREATHE: Second-Order Gradients and Heteroscedastic Emulation based Design Space Exploration Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.08666
Researchers constantly strive to explore larger and more complex search spaces in various scientific studies and physical experiments. However, such investigations often involve sophisticated simulators or time-consuming experiments that make exploring and observing new design samples challenging. Previous works that target such applications are typically sample-inefficient and restricted to vector search spaces. To address these limitations, this work proposes a constrained multi-objective optimization (MOO) framework, called BREATHE, that searches not only traditional vector-based design spaces but also graph-based design spaces to obtain best-performing graphs. It leverages second-order gradients and actively trains a heteroscedastic surrogate model for sample-efficient optimization. In a single-objective vector optimization application, it leads to 64.1% higher performance than the next-best baseline, random forest regression. In graph-based search, BREATHE outperforms the next-best baseline, i.e., a graphical version of Gaussian-process-based Bayesian optimization, with up to 64.9% higher performance. In a MOO task, it achieves up to 21.9$\times$ higher hypervolume than the state-of-the-art method, multi-objective Bayesian optimization (MOBOpt). BREATHE also outperforms the baseline methods on most standard MOO benchmark applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.08666
- https://arxiv.org/pdf/2308.08666
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386044350
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386044350Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.08666Digital Object Identifier
- Title
-
BREATHE: Second-Order Gradients and Heteroscedastic Emulation based Design Space ExplorationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-16Full publication date if available
- Authors
-
Shikhar Tuli, Niraj K. JhaList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.08666Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.08666Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.08666Direct OA link when available
- Concepts
-
Computer science, Bayesian optimization, Baseline (sea), Emulation, Benchmark (surveying), Gaussian process, Heteroscedasticity, Kriging, Pooling, Mathematical optimization, Machine learning, Graph, Bayesian probability, Artificial intelligence, Gaussian, Theoretical computer science, Mathematics, Geology, Economic growth, Geodesy, Physics, Geography, Economics, Oceanography, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386044350 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.08666 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.08666 |
| ids.openalex | https://openalex.org/W4386044350 |
| fwci | |
| type | preprint |
| title | BREATHE: Second-Order Gradients and Heteroscedastic Emulation based Design Space Exploration |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10848 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9513000249862671 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.951200008392334 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6892706751823425 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2778049539 |
| concepts[1].level | 2 |
| concepts[1].score | 0.677574634552002 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17002908 |
| concepts[1].display_name | Bayesian optimization |
| concepts[2].id | https://openalex.org/C12725497 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5590850710868835 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q810247 |
| concepts[2].display_name | Baseline (sea) |
| concepts[3].id | https://openalex.org/C149810388 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5234134197235107 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5374873 |
| concepts[3].display_name | Emulation |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4984560012817383 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C61326573 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4965835213661194 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[5].display_name | Gaussian process |
| concepts[6].id | https://openalex.org/C101104100 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4829953908920288 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1063540 |
| concepts[6].display_name | Heteroscedasticity |
| concepts[7].id | https://openalex.org/C81692654 |
| concepts[7].level | 2 |
| concepts[7].score | 0.473232626914978 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q225926 |
| concepts[7].display_name | Kriging |
| concepts[8].id | https://openalex.org/C70437156 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46441811323165894 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[8].display_name | Pooling |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4471316337585449 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.42866265773773193 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C132525143 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42119163274765015 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[11].display_name | Graph |
| concepts[12].id | https://openalex.org/C107673813 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4118536114692688 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[12].display_name | Bayesian probability |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.32623350620269775 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C163716315 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2927044630050659 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[14].display_name | Gaussian |
| concepts[15].id | https://openalex.org/C80444323 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1926155686378479 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[15].display_name | Theoretical computer science |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.14737442135810852 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C127313418 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[17].display_name | Geology |
| concepts[18].id | https://openalex.org/C50522688 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[18].display_name | Economic growth |
| concepts[19].id | https://openalex.org/C13280743 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[19].display_name | Geodesy |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C205649164 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[21].display_name | Geography |
| concepts[22].id | https://openalex.org/C162324750 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[22].display_name | Economics |
| concepts[23].id | https://openalex.org/C111368507 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[23].display_name | Oceanography |
| concepts[24].id | https://openalex.org/C62520636 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[24].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6892706751823425 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/bayesian-optimization |
| keywords[1].score | 0.677574634552002 |
| keywords[1].display_name | Bayesian optimization |
| keywords[2].id | https://openalex.org/keywords/baseline |
| keywords[2].score | 0.5590850710868835 |
| keywords[2].display_name | Baseline (sea) |
| keywords[3].id | https://openalex.org/keywords/emulation |
| keywords[3].score | 0.5234134197235107 |
| keywords[3].display_name | Emulation |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.4984560012817383 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/gaussian-process |
| keywords[5].score | 0.4965835213661194 |
| keywords[5].display_name | Gaussian process |
| keywords[6].id | https://openalex.org/keywords/heteroscedasticity |
| keywords[6].score | 0.4829953908920288 |
| keywords[6].display_name | Heteroscedasticity |
| keywords[7].id | https://openalex.org/keywords/kriging |
| keywords[7].score | 0.473232626914978 |
| keywords[7].display_name | Kriging |
| keywords[8].id | https://openalex.org/keywords/pooling |
| keywords[8].score | 0.46441811323165894 |
| keywords[8].display_name | Pooling |
| keywords[9].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[9].score | 0.4471316337585449 |
| keywords[9].display_name | Mathematical optimization |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.42866265773773193 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/graph |
| keywords[11].score | 0.42119163274765015 |
| keywords[11].display_name | Graph |
| keywords[12].id | https://openalex.org/keywords/bayesian-probability |
| keywords[12].score | 0.4118536114692688 |
| keywords[12].display_name | Bayesian probability |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.32623350620269775 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/gaussian |
| keywords[14].score | 0.2927044630050659 |
| keywords[14].display_name | Gaussian |
| keywords[15].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[15].score | 0.1926155686378479 |
| keywords[15].display_name | Theoretical computer science |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.14737442135810852 |
| keywords[16].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.08666 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.08666 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.08666 |
| locations[1].id | doi:10.48550/arxiv.2308.08666 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.08666 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5011008635 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9230-5877 |
| authorships[0].author.display_name | Shikhar Tuli |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tuli, Shikhar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086131079 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1539-0369 |
| authorships[1].author.display_name | Niraj K. Jha |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jha, Niraj K. |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.08666 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | BREATHE: Second-Order Gradients and Heteroscedastic Emulation based Design Space Exploration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10848 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Multi-Objective Optimization Algorithms |
| related_works | https://openalex.org/W3104422856, https://openalex.org/W4206864338, https://openalex.org/W566010457, https://openalex.org/W4287867179, https://openalex.org/W2600092203, https://openalex.org/W4300066510, https://openalex.org/W3134690064, https://openalex.org/W4210726438, https://openalex.org/W2056958800, https://openalex.org/W2803685231 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.08666 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.08666 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.08666 |
| primary_location.id | pmh:oai:arXiv.org:2308.08666 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.08666 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.08666 |
| publication_date | 2023-08-16 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 59, 91, 99, 126, 140 |
| abstract_inverted_index.In | 98, 117, 139 |
| abstract_inverted_index.It | 84 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.in | 11 |
| abstract_inverted_index.it | 104, 143 |
| abstract_inverted_index.of | 129 |
| abstract_inverted_index.on | 164 |
| abstract_inverted_index.or | 25 |
| abstract_inverted_index.to | 3, 48, 80, 106, 135, 146 |
| abstract_inverted_index.up | 134, 145 |
| abstract_inverted_index.MOO | 141, 167 |
| abstract_inverted_index.and | 6, 15, 31, 46, 88 |
| abstract_inverted_index.are | 43 |
| abstract_inverted_index.but | 75 |
| abstract_inverted_index.for | 95 |
| abstract_inverted_index.new | 33 |
| abstract_inverted_index.not | 69 |
| abstract_inverted_index.the | 111, 122, 151, 161 |
| abstract_inverted_index.also | 76, 159 |
| abstract_inverted_index.make | 29 |
| abstract_inverted_index.more | 7 |
| abstract_inverted_index.most | 165 |
| abstract_inverted_index.only | 70 |
| abstract_inverted_index.such | 19, 41 |
| abstract_inverted_index.than | 110, 150 |
| abstract_inverted_index.that | 28, 39, 67 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.with | 133 |
| abstract_inverted_index.work | 57 |
| abstract_inverted_index.(MOO) | 63 |
| abstract_inverted_index.64.1% | 107 |
| abstract_inverted_index.64.9% | 136 |
| abstract_inverted_index.i.e., | 125 |
| abstract_inverted_index.leads | 105 |
| abstract_inverted_index.model | 94 |
| abstract_inverted_index.often | 21 |
| abstract_inverted_index.task, | 142 |
| abstract_inverted_index.these | 54 |
| abstract_inverted_index.works | 38 |
| abstract_inverted_index.called | 65 |
| abstract_inverted_index.design | 34, 73, 78 |
| abstract_inverted_index.forest | 115 |
| abstract_inverted_index.higher | 108, 137, 148 |
| abstract_inverted_index.larger | 5 |
| abstract_inverted_index.obtain | 81 |
| abstract_inverted_index.random | 114 |
| abstract_inverted_index.search | 9, 50 |
| abstract_inverted_index.spaces | 10, 74, 79 |
| abstract_inverted_index.strive | 2 |
| abstract_inverted_index.target | 40 |
| abstract_inverted_index.trains | 90 |
| abstract_inverted_index.vector | 49, 101 |
| abstract_inverted_index.BREATHE | 120, 158 |
| abstract_inverted_index.address | 53 |
| abstract_inverted_index.complex | 8 |
| abstract_inverted_index.explore | 4 |
| abstract_inverted_index.graphs. | 83 |
| abstract_inverted_index.involve | 22 |
| abstract_inverted_index.method, | 153 |
| abstract_inverted_index.methods | 163 |
| abstract_inverted_index.samples | 35 |
| abstract_inverted_index.search, | 119 |
| abstract_inverted_index.spaces. | 51 |
| abstract_inverted_index.studies | 14 |
| abstract_inverted_index.various | 12 |
| abstract_inverted_index.version | 128 |
| abstract_inverted_index.BREATHE, | 66 |
| abstract_inverted_index.Bayesian | 131, 155 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.Previous | 37 |
| abstract_inverted_index.achieves | 144 |
| abstract_inverted_index.actively | 89 |
| abstract_inverted_index.baseline | 162 |
| abstract_inverted_index.physical | 16 |
| abstract_inverted_index.proposes | 58 |
| abstract_inverted_index.searches | 68 |
| abstract_inverted_index.standard | 166 |
| abstract_inverted_index.(MOBOpt). | 157 |
| abstract_inverted_index.baseline, | 113, 124 |
| abstract_inverted_index.benchmark | 168 |
| abstract_inverted_index.exploring | 30 |
| abstract_inverted_index.gradients | 87 |
| abstract_inverted_index.graphical | 127 |
| abstract_inverted_index.leverages | 85 |
| abstract_inverted_index.next-best | 112, 123 |
| abstract_inverted_index.observing | 32 |
| abstract_inverted_index.surrogate | 93 |
| abstract_inverted_index.typically | 44 |
| abstract_inverted_index.constantly | 1 |
| abstract_inverted_index.framework, | 64 |
| abstract_inverted_index.restricted | 47 |
| abstract_inverted_index.scientific | 13 |
| abstract_inverted_index.simulators | 24 |
| abstract_inverted_index.Researchers | 0 |
| abstract_inverted_index.constrained | 60 |
| abstract_inverted_index.experiments | 27 |
| abstract_inverted_index.graph-based | 77, 118 |
| abstract_inverted_index.hypervolume | 149 |
| abstract_inverted_index.outperforms | 121, 160 |
| abstract_inverted_index.performance | 109 |
| abstract_inverted_index.regression. | 116 |
| abstract_inverted_index.traditional | 71 |
| abstract_inverted_index.21.9$\times$ | 147 |
| abstract_inverted_index.application, | 103 |
| abstract_inverted_index.applications | 42 |
| abstract_inverted_index.challenging. | 36 |
| abstract_inverted_index.experiments. | 17 |
| abstract_inverted_index.limitations, | 55 |
| abstract_inverted_index.optimization | 62, 102, 156 |
| abstract_inverted_index.performance. | 138 |
| abstract_inverted_index.second-order | 86 |
| abstract_inverted_index.vector-based | 72 |
| abstract_inverted_index.applications. | 169 |
| abstract_inverted_index.optimization, | 132 |
| abstract_inverted_index.optimization. | 97 |
| abstract_inverted_index.sophisticated | 23 |
| abstract_inverted_index.investigations | 20 |
| abstract_inverted_index.time-consuming | 26 |
| abstract_inverted_index.best-performing | 82 |
| abstract_inverted_index.heteroscedastic | 92 |
| abstract_inverted_index.multi-objective | 61, 154 |
| abstract_inverted_index.sample-efficient | 96 |
| abstract_inverted_index.single-objective | 100 |
| abstract_inverted_index.state-of-the-art | 152 |
| abstract_inverted_index.sample-inefficient | 45 |
| abstract_inverted_index.Gaussian-process-based | 130 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile |