Bridge the Gap between Supervised and Unsupervised Learning for Fine-Grained Classification Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.00441
Unsupervised learning technology has caught up with or even surpassed supervised learning technology in general object classification (GOC) and person re-identification (re-ID). However, it is found that the unsupervised learning of fine-grained visual classification (FGVC) is more challenging than GOC and person re-ID. In order to bridge the gap between unsupervised and supervised learning for FGVC, we investigate the essential factors (including feature extraction, clustering, and contrastive learning) for the performance gap between supervised and unsupervised FGVC. Furthermore, we propose a simple, effective, and practical method, termed as UFCL, to alleviate the gap. Three key issues are concerned and improved: First, we introduce a robust and powerful backbone, ResNet50-IBN, which has an ability of domain adaptation when we transfer ImageNet pre-trained models to FGVC tasks. Next, we propose to introduce HDBSCAN instead of DBSCAN to do clustering, which can generate better clusters for adjacent categories with fewer hyper-parameters. Finally, we propose a weighted feature agent and its updating mechanism to do contrastive learning by using the pseudo labels with inevitable noise, which can improve the optimization process of learning the parameters of the network. The effectiveness of our UFCL is verified on CUB-200-2011, Oxford-Flowers, Oxford-Pets, Stanford-Dogs, Stanford-Cars and FGVC-Aircraft datasets. Under the unsupervised FGVC setting, we achieve state-of-the-art results, and analyze the key factors and the important parameters to provide a practical guidance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.00441
- https://arxiv.org/pdf/2203.00441
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221142651
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221142651Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.00441Digital Object Identifier
- Title
-
Bridge the Gap between Supervised and Unsupervised Learning for Fine-Grained ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-01Full publication date if available
- Authors
-
Jiabao Wang, Yang Li, Xiu-Shen Wei, Hang Li, Zhuang Miao, Rui ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.00441Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.00441Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.00441Direct OA link when available
- Concepts
-
Artificial intelligence, Unsupervised learning, Computer science, Machine learning, Cluster analysis, Transfer of learning, Supervised learning, Bridge (graph theory), Key (lock), Feature learning, Deep learning, Artificial neural network, Pattern recognition (psychology), Computer security, Internal medicine, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221142651 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.00441 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.00441 |
| ids.openalex | https://openalex.org/W4221142651 |
| fwci | |
| type | preprint |
| title | Bridge the Gap between Supervised and Unsupervised Learning for Fine-Grained Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T12597 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9779999852180481 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Fire Detection and Safety Systems |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9735000133514404 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7787493467330933 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C8038995 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7758573293685913 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[1].display_name | Unsupervised learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.756261944770813 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.7243059873580933 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C73555534 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5738358497619629 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[4].display_name | Cluster analysis |
| concepts[5].id | https://openalex.org/C150899416 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5670262575149536 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[5].display_name | Transfer of learning |
| concepts[6].id | https://openalex.org/C136389625 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5433180928230286 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[6].display_name | Supervised learning |
| concepts[7].id | https://openalex.org/C100776233 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4954744577407837 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2532492 |
| concepts[7].display_name | Bridge (graph theory) |
| concepts[8].id | https://openalex.org/C26517878 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45650914311408997 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[8].display_name | Key (lock) |
| concepts[9].id | https://openalex.org/C59404180 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4546400308609009 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[9].display_name | Feature learning |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4244665205478668 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.36072784662246704 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.341655433177948 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C38652104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[13].display_name | Computer security |
| concepts[14].id | https://openalex.org/C126322002 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[14].display_name | Internal medicine |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7787493467330933 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[1].score | 0.7758573293685913 |
| keywords[1].display_name | Unsupervised learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.756261944770813 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.7243059873580933 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/cluster-analysis |
| keywords[4].score | 0.5738358497619629 |
| keywords[4].display_name | Cluster analysis |
| keywords[5].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[5].score | 0.5670262575149536 |
| keywords[5].display_name | Transfer of learning |
| keywords[6].id | https://openalex.org/keywords/supervised-learning |
| keywords[6].score | 0.5433180928230286 |
| keywords[6].display_name | Supervised learning |
| keywords[7].id | https://openalex.org/keywords/bridge |
| keywords[7].score | 0.4954744577407837 |
| keywords[7].display_name | Bridge (graph theory) |
| keywords[8].id | https://openalex.org/keywords/key |
| keywords[8].score | 0.45650914311408997 |
| keywords[8].display_name | Key (lock) |
| keywords[9].id | https://openalex.org/keywords/feature-learning |
| keywords[9].score | 0.4546400308609009 |
| keywords[9].display_name | Feature learning |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.4244665205478668 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.36072784662246704 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.341655433177948 |
| keywords[12].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.00441 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.00441 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.00441 |
| locations[1].id | doi:10.48550/arxiv.2203.00441 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.00441 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100633426 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6371-9739 |
| authorships[0].author.display_name | Jiabao Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Jiabao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100421480 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3006-7420 |
| authorships[1].author.display_name | Yang Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Yang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5066964304 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8200-1845 |
| authorships[2].author.display_name | Xiu-Shen Wei |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wei, Xiu-Shen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100455129 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1230-4007 |
| authorships[3].author.display_name | Hang Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Hang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100376489 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2289-4589 |
| authorships[4].author.display_name | Zhuang Miao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Miao, Zhuang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100421978 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9418-0863 |
| authorships[5].author.display_name | Rui Zhang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhang, Rui |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.00441 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-04-03T00:00:00 |
| display_name | Bridge the Gap between Supervised and Unsupervised Learning for Fine-Grained Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W3174759195, https://openalex.org/W3167013339, https://openalex.org/W4287121366, https://openalex.org/W2726367589, https://openalex.org/W3148060700, https://openalex.org/W2440023763, https://openalex.org/W2962474440, https://openalex.org/W3080681248, https://openalex.org/W4376646226, https://openalex.org/W3047177827 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.00441 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.00441 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.00441 |
| primary_location.id | pmh:oai:arXiv.org:2203.00441 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.00441 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.00441 |
| publication_date | 2022-03-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 80, 103, 151, 220 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.an | 111 |
| abstract_inverted_index.as | 87 |
| abstract_inverted_index.by | 163 |
| abstract_inverted_index.do | 135, 160 |
| abstract_inverted_index.in | 13 |
| abstract_inverted_index.is | 24, 35, 189 |
| abstract_inverted_index.it | 23 |
| abstract_inverted_index.of | 30, 113, 132, 177, 181, 186 |
| abstract_inverted_index.on | 191 |
| abstract_inverted_index.or | 7 |
| abstract_inverted_index.to | 45, 89, 122, 128, 134, 159, 218 |
| abstract_inverted_index.up | 5 |
| abstract_inverted_index.we | 56, 78, 101, 117, 126, 149, 205 |
| abstract_inverted_index.GOC | 39 |
| abstract_inverted_index.The | 184 |
| abstract_inverted_index.and | 18, 40, 51, 65, 74, 83, 98, 105, 155, 197, 209, 214 |
| abstract_inverted_index.are | 96 |
| abstract_inverted_index.can | 138, 172 |
| abstract_inverted_index.for | 54, 68, 142 |
| abstract_inverted_index.gap | 48, 71 |
| abstract_inverted_index.has | 3, 110 |
| abstract_inverted_index.its | 156 |
| abstract_inverted_index.key | 94, 212 |
| abstract_inverted_index.our | 187 |
| abstract_inverted_index.the | 27, 47, 58, 69, 91, 165, 174, 179, 182, 201, 211, 215 |
| abstract_inverted_index.FGVC | 123, 203 |
| abstract_inverted_index.UFCL | 188 |
| abstract_inverted_index.even | 8 |
| abstract_inverted_index.gap. | 92 |
| abstract_inverted_index.more | 36 |
| abstract_inverted_index.than | 38 |
| abstract_inverted_index.that | 26 |
| abstract_inverted_index.when | 116 |
| abstract_inverted_index.with | 6, 145, 168 |
| abstract_inverted_index.(GOC) | 17 |
| abstract_inverted_index.FGVC, | 55 |
| abstract_inverted_index.FGVC. | 76 |
| abstract_inverted_index.Next, | 125 |
| abstract_inverted_index.Three | 93 |
| abstract_inverted_index.UFCL, | 88 |
| abstract_inverted_index.Under | 200 |
| abstract_inverted_index.agent | 154 |
| abstract_inverted_index.fewer | 146 |
| abstract_inverted_index.found | 25 |
| abstract_inverted_index.order | 44 |
| abstract_inverted_index.using | 164 |
| abstract_inverted_index.which | 109, 137, 171 |
| abstract_inverted_index.(FGVC) | 34 |
| abstract_inverted_index.DBSCAN | 133 |
| abstract_inverted_index.First, | 100 |
| abstract_inverted_index.better | 140 |
| abstract_inverted_index.bridge | 46 |
| abstract_inverted_index.caught | 4 |
| abstract_inverted_index.domain | 114 |
| abstract_inverted_index.issues | 95 |
| abstract_inverted_index.labels | 167 |
| abstract_inverted_index.models | 121 |
| abstract_inverted_index.noise, | 170 |
| abstract_inverted_index.object | 15 |
| abstract_inverted_index.person | 19, 41 |
| abstract_inverted_index.pseudo | 166 |
| abstract_inverted_index.re-ID. | 42 |
| abstract_inverted_index.robust | 104 |
| abstract_inverted_index.tasks. | 124 |
| abstract_inverted_index.termed | 86 |
| abstract_inverted_index.visual | 32 |
| abstract_inverted_index.HDBSCAN | 130 |
| abstract_inverted_index.ability | 112 |
| abstract_inverted_index.achieve | 206 |
| abstract_inverted_index.analyze | 210 |
| abstract_inverted_index.between | 49, 72 |
| abstract_inverted_index.factors | 60, 213 |
| abstract_inverted_index.feature | 62, 153 |
| abstract_inverted_index.general | 14 |
| abstract_inverted_index.improve | 173 |
| abstract_inverted_index.instead | 131 |
| abstract_inverted_index.method, | 85 |
| abstract_inverted_index.process | 176 |
| abstract_inverted_index.propose | 79, 127, 150 |
| abstract_inverted_index.provide | 219 |
| abstract_inverted_index.simple, | 81 |
| abstract_inverted_index.(re-ID). | 21 |
| abstract_inverted_index.Finally, | 148 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.ImageNet | 119 |
| abstract_inverted_index.adjacent | 143 |
| abstract_inverted_index.clusters | 141 |
| abstract_inverted_index.generate | 139 |
| abstract_inverted_index.learning | 1, 11, 29, 53, 162, 178 |
| abstract_inverted_index.network. | 183 |
| abstract_inverted_index.powerful | 106 |
| abstract_inverted_index.results, | 208 |
| abstract_inverted_index.setting, | 204 |
| abstract_inverted_index.transfer | 118 |
| abstract_inverted_index.updating | 157 |
| abstract_inverted_index.verified | 190 |
| abstract_inverted_index.weighted | 152 |
| abstract_inverted_index.alleviate | 90 |
| abstract_inverted_index.backbone, | 107 |
| abstract_inverted_index.concerned | 97 |
| abstract_inverted_index.datasets. | 199 |
| abstract_inverted_index.essential | 59 |
| abstract_inverted_index.guidance. | 222 |
| abstract_inverted_index.important | 216 |
| abstract_inverted_index.improved: | 99 |
| abstract_inverted_index.introduce | 102, 129 |
| abstract_inverted_index.learning) | 67 |
| abstract_inverted_index.mechanism | 158 |
| abstract_inverted_index.practical | 84, 221 |
| abstract_inverted_index.surpassed | 9 |
| abstract_inverted_index.(including | 61 |
| abstract_inverted_index.adaptation | 115 |
| abstract_inverted_index.categories | 144 |
| abstract_inverted_index.effective, | 82 |
| abstract_inverted_index.inevitable | 169 |
| abstract_inverted_index.parameters | 180, 217 |
| abstract_inverted_index.supervised | 10, 52, 73 |
| abstract_inverted_index.technology | 2, 12 |
| abstract_inverted_index.challenging | 37 |
| abstract_inverted_index.clustering, | 64, 136 |
| abstract_inverted_index.contrastive | 66, 161 |
| abstract_inverted_index.extraction, | 63 |
| abstract_inverted_index.investigate | 57 |
| abstract_inverted_index.performance | 70 |
| abstract_inverted_index.pre-trained | 120 |
| abstract_inverted_index.Furthermore, | 77 |
| abstract_inverted_index.Oxford-Pets, | 194 |
| abstract_inverted_index.Unsupervised | 0 |
| abstract_inverted_index.fine-grained | 31 |
| abstract_inverted_index.optimization | 175 |
| abstract_inverted_index.unsupervised | 28, 50, 75, 202 |
| abstract_inverted_index.CUB-200-2011, | 192 |
| abstract_inverted_index.FGVC-Aircraft | 198 |
| abstract_inverted_index.ResNet50-IBN, | 108 |
| abstract_inverted_index.Stanford-Cars | 196 |
| abstract_inverted_index.effectiveness | 185 |
| abstract_inverted_index.Stanford-Dogs, | 195 |
| abstract_inverted_index.classification | 16, 33 |
| abstract_inverted_index.Oxford-Flowers, | 193 |
| abstract_inverted_index.state-of-the-art | 207 |
| abstract_inverted_index.hyper-parameters. | 147 |
| abstract_inverted_index.re-identification | 20 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |