Bridging Classification and Segmentation in Osteosarcoma Assessment via Foundation and Discrete Diffusion Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.01932
Osteosarcoma, the most common primary bone cancer, often requires accurate necrosis assessment from whole slide images (WSIs) for effective treatment planning and prognosis. However, manual assessments are subjective and prone to variability. In response, we introduce FDDM, a novel framework bridging the gap between patch classification and region-based segmentation. FDDM operates in two stages: patch-based classification, followed by region-based refinement, enabling cross-patch information intergation. Leveraging a newly curated dataset of osteosarcoma images, FDDM demonstrates superior segmentation performance, achieving up to a 10% improvement mIOU and a 32.12% enhancement in necrosis rate estimation over state-of-the-art methods. This framework sets a new benchmark in osteosarcoma assessment, highlighting the potential of foundation models and diffusion-based refinements in complex medical imaging tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.01932
- https://arxiv.org/pdf/2501.01932
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406093535
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406093535Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.01932Digital Object Identifier
- Title
-
Bridging Classification and Segmentation in Osteosarcoma Assessment via Foundation and Discrete Diffusion ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-03Full publication date if available
- Authors
-
Mạnh Hùng Nguyễn, Duc-Chinh Nguyen, Trung Viet Nguyen, H. Yamada, Huy Hieu Pham, Phi Le NguyenList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.01932Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.01932Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.01932Direct OA link when available
- Concepts
-
Bridging (networking), Foundation (evidence), Segmentation, Computer science, Osteosarcoma, Quality assessment, Artificial intelligence, Medicine, Engineering, Geography, Reliability engineering, Cancer research, Archaeology, Computer network, Evaluation methodsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406093535 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.01932 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.01932 |
| ids.openalex | https://openalex.org/W4406093535 |
| fwci | |
| type | preprint |
| title | Bridging Classification and Segmentation in Osteosarcoma Assessment via Foundation and Discrete Diffusion Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9409999847412109 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C174348530 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8448648452758789 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188635 |
| concepts[0].display_name | Bridging (networking) |
| concepts[1].id | https://openalex.org/C2780966255 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6996353268623352 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5474306 |
| concepts[1].display_name | Foundation (evidence) |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6498727202415466 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.47942179441452026 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2777760704 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4616026282310486 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q549534 |
| concepts[4].display_name | Osteosarcoma |
| concepts[5].id | https://openalex.org/C3020001037 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4139305353164673 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q836575 |
| concepts[5].display_name | Quality assessment |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3794293701648712 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.21619167923927307 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.20264530181884766 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.19737884402275085 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C200601418 |
| concepts[10].level | 1 |
| concepts[10].score | 0.09086295962333679 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2193887 |
| concepts[10].display_name | Reliability engineering |
| concepts[11].id | https://openalex.org/C502942594 |
| concepts[11].level | 1 |
| concepts[11].score | 0.06647986173629761 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3421914 |
| concepts[11].display_name | Cancer research |
| concepts[12].id | https://openalex.org/C166957645 |
| concepts[12].level | 1 |
| concepts[12].score | 0.06592094898223877 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[12].display_name | Archaeology |
| concepts[13].id | https://openalex.org/C31258907 |
| concepts[13].level | 1 |
| concepts[13].score | 0.05781605839729309 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[13].display_name | Computer network |
| concepts[14].id | https://openalex.org/C3018395757 |
| concepts[14].level | 2 |
| concepts[14].score | 0.054311275482177734 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1379672 |
| concepts[14].display_name | Evaluation methods |
| keywords[0].id | https://openalex.org/keywords/bridging |
| keywords[0].score | 0.8448648452758789 |
| keywords[0].display_name | Bridging (networking) |
| keywords[1].id | https://openalex.org/keywords/foundation |
| keywords[1].score | 0.6996353268623352 |
| keywords[1].display_name | Foundation (evidence) |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.6498727202415466 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.47942179441452026 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/osteosarcoma |
| keywords[4].score | 0.4616026282310486 |
| keywords[4].display_name | Osteosarcoma |
| keywords[5].id | https://openalex.org/keywords/quality-assessment |
| keywords[5].score | 0.4139305353164673 |
| keywords[5].display_name | Quality assessment |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3794293701648712 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.21619167923927307 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.20264530181884766 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.19737884402275085 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/reliability-engineering |
| keywords[10].score | 0.09086295962333679 |
| keywords[10].display_name | Reliability engineering |
| keywords[11].id | https://openalex.org/keywords/cancer-research |
| keywords[11].score | 0.06647986173629761 |
| keywords[11].display_name | Cancer research |
| keywords[12].id | https://openalex.org/keywords/archaeology |
| keywords[12].score | 0.06592094898223877 |
| keywords[12].display_name | Archaeology |
| keywords[13].id | https://openalex.org/keywords/computer-network |
| keywords[13].score | 0.05781605839729309 |
| keywords[13].display_name | Computer network |
| keywords[14].id | https://openalex.org/keywords/evaluation-methods |
| keywords[14].score | 0.054311275482177734 |
| keywords[14].display_name | Evaluation methods |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.01932 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.01932 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.01932 |
| locations[1].id | doi:10.48550/arxiv.2501.01932 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.01932 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5014141899 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6189-5843 |
| authorships[0].author.display_name | Mạnh Hùng Nguyễn |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nguyen, Manh Duong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101499271 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-3501-7018 |
| authorships[1].author.display_name | Duc-Chinh Nguyen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nguyen, Dac Thai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5000105264 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1749-8509 |
| authorships[2].author.display_name | Trung Viet Nguyen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nguyen, Trung Viet |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101476342 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1611-438X |
| authorships[3].author.display_name | H. Yamada |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yamada, Homi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5108854597 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Huy Hieu Pham |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pham, Huy Hieu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5058485829 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6547-7641 |
| authorships[5].author.display_name | Phi Le Nguyen |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Nguyen, Phi Le |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.01932 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-01-07T00:00:00 |
| display_name | Bridging Classification and Segmentation in Osteosarcoma Assessment via Foundation and Discrete Diffusion Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9409999847412109 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W4205296404, https://openalex.org/W2320346276, https://openalex.org/W3178656640, https://openalex.org/W2356699866, https://openalex.org/W4241436983, https://openalex.org/W4306641919, https://openalex.org/W2768492030, https://openalex.org/W4323315835, https://openalex.org/W2620289816, https://openalex.org/W2388705147 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.01932 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.01932 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.01932 |
| primary_location.id | pmh:oai:arXiv.org:2501.01932 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.01932 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.01932 |
| publication_date | 2025-01-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 37, 65, 80, 85, 98 |
| abstract_inverted_index.In | 32 |
| abstract_inverted_index.by | 57 |
| abstract_inverted_index.in | 51, 88, 101, 113 |
| abstract_inverted_index.of | 69, 107 |
| abstract_inverted_index.to | 30, 79 |
| abstract_inverted_index.up | 78 |
| abstract_inverted_index.we | 34 |
| abstract_inverted_index.10% | 81 |
| abstract_inverted_index.and | 21, 28, 46, 84, 110 |
| abstract_inverted_index.are | 26 |
| abstract_inverted_index.for | 17 |
| abstract_inverted_index.gap | 42 |
| abstract_inverted_index.new | 99 |
| abstract_inverted_index.the | 1, 41, 105 |
| abstract_inverted_index.two | 52 |
| abstract_inverted_index.FDDM | 49, 72 |
| abstract_inverted_index.This | 95 |
| abstract_inverted_index.bone | 5 |
| abstract_inverted_index.from | 12 |
| abstract_inverted_index.mIOU | 83 |
| abstract_inverted_index.most | 2 |
| abstract_inverted_index.over | 92 |
| abstract_inverted_index.rate | 90 |
| abstract_inverted_index.sets | 97 |
| abstract_inverted_index.FDDM, | 36 |
| abstract_inverted_index.newly | 66 |
| abstract_inverted_index.novel | 38 |
| abstract_inverted_index.often | 7 |
| abstract_inverted_index.patch | 44 |
| abstract_inverted_index.prone | 29 |
| abstract_inverted_index.slide | 14 |
| abstract_inverted_index.whole | 13 |
| abstract_inverted_index.(WSIs) | 16 |
| abstract_inverted_index.32.12% | 86 |
| abstract_inverted_index.common | 3 |
| abstract_inverted_index.images | 15 |
| abstract_inverted_index.manual | 24 |
| abstract_inverted_index.models | 109 |
| abstract_inverted_index.tasks. | 117 |
| abstract_inverted_index.between | 43 |
| abstract_inverted_index.cancer, | 6 |
| abstract_inverted_index.complex | 114 |
| abstract_inverted_index.curated | 67 |
| abstract_inverted_index.dataset | 68 |
| abstract_inverted_index.images, | 71 |
| abstract_inverted_index.imaging | 116 |
| abstract_inverted_index.medical | 115 |
| abstract_inverted_index.primary | 4 |
| abstract_inverted_index.stages: | 53 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.accurate | 9 |
| abstract_inverted_index.bridging | 40 |
| abstract_inverted_index.enabling | 60 |
| abstract_inverted_index.followed | 56 |
| abstract_inverted_index.methods. | 94 |
| abstract_inverted_index.necrosis | 10, 89 |
| abstract_inverted_index.operates | 50 |
| abstract_inverted_index.planning | 20 |
| abstract_inverted_index.requires | 8 |
| abstract_inverted_index.superior | 74 |
| abstract_inverted_index.achieving | 77 |
| abstract_inverted_index.benchmark | 100 |
| abstract_inverted_index.effective | 18 |
| abstract_inverted_index.framework | 39, 96 |
| abstract_inverted_index.introduce | 35 |
| abstract_inverted_index.potential | 106 |
| abstract_inverted_index.response, | 33 |
| abstract_inverted_index.treatment | 19 |
| abstract_inverted_index.Leveraging | 64 |
| abstract_inverted_index.assessment | 11 |
| abstract_inverted_index.estimation | 91 |
| abstract_inverted_index.foundation | 108 |
| abstract_inverted_index.prognosis. | 22 |
| abstract_inverted_index.subjective | 27 |
| abstract_inverted_index.assessment, | 103 |
| abstract_inverted_index.assessments | 25 |
| abstract_inverted_index.cross-patch | 61 |
| abstract_inverted_index.enhancement | 87 |
| abstract_inverted_index.improvement | 82 |
| abstract_inverted_index.information | 62 |
| abstract_inverted_index.patch-based | 54 |
| abstract_inverted_index.refinement, | 59 |
| abstract_inverted_index.refinements | 112 |
| abstract_inverted_index.demonstrates | 73 |
| abstract_inverted_index.highlighting | 104 |
| abstract_inverted_index.intergation. | 63 |
| abstract_inverted_index.osteosarcoma | 70, 102 |
| abstract_inverted_index.performance, | 76 |
| abstract_inverted_index.region-based | 47, 58 |
| abstract_inverted_index.segmentation | 75 |
| abstract_inverted_index.variability. | 31 |
| abstract_inverted_index.Osteosarcoma, | 0 |
| abstract_inverted_index.segmentation. | 48 |
| abstract_inverted_index.classification | 45 |
| abstract_inverted_index.classification, | 55 |
| abstract_inverted_index.diffusion-based | 111 |
| abstract_inverted_index.state-of-the-art | 93 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |