Bridging Formal Shape Models and Deep Learning: A Novel Fusion for Understanding 3D Objects Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/s24123874
This article describes a novel fusion of a generative formal model for three-dimensional (3D) shapes with deep learning (DL) methods to understand the geometric structure of 3D objects and the relationships between their components, given a collection of unorganized point cloud measurements. Formal 3D shape models are implemented as shape grammar programs written in Procedural Shape Modeling Language (PSML). Users write PSML programs to describe complex objects, and DL networks estimate the configured free parameters of the program to generate 3D shapes. Users write PSML programs to enforce fundamental rules that define an object class and encode object attributes, including shapes, components, size, position, etc., into a parametric representation of objects. This fusion of the generative model with DL offers artificial intelligence (AI) models an opportunity to better understand the geometric organization of objects in terms of their components and their relationships to other objects. This approach allows human-in-the-loop control over DL estimates by specifying lists of candidate objects, the shape variations that each object can exhibit, and the level of detail or, equivalently, dimension of the latent representation of the shape. The results demonstrate the advantages of the proposed method over competing approaches.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s24123874
- https://www.mdpi.com/1424-8220/24/12/3874/pdf?version=1718435344
- OA Status
- gold
- Cited By
- 1
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399745541
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399745541Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s24123874Digital Object Identifier
- Title
-
Bridging Formal Shape Models and Deep Learning: A Novel Fusion for Understanding 3D ObjectsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-15Full publication date if available
- Authors
-
Jincheng Zhang, Andrew WillisList of authors in order
- Landing page
-
https://doi.org/10.3390/s24123874Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/24/12/3874/pdf?version=1718435344Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/24/12/3874/pdf?version=1718435344Direct OA link when available
- Concepts
-
Computer science, Bridging (networking), Point cloud, Generative model, Generative grammar, Artificial intelligence, Representation (politics), Object (grammar), Parametric statistics, Dimension (graph theory), Active shape model, Grammar, Mathematics, Law, Statistics, Philosophy, Segmentation, Linguistics, Politics, Political science, Pure mathematics, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399745541 |
|---|---|
| doi | https://doi.org/10.3390/s24123874 |
| ids.doi | https://doi.org/10.3390/s24123874 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38931658 |
| ids.openalex | https://openalex.org/W4399745541 |
| fwci | 0.72079647 |
| type | article |
| title | Bridging Formal Shape Models and Deep Learning: A Novel Fusion for Understanding 3D Objects |
| biblio.issue | 12 |
| biblio.volume | 24 |
| biblio.last_page | 3874 |
| biblio.first_page | 3874 |
| topics[0].id | https://openalex.org/T10719 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | 3D Shape Modeling and Analysis |
| topics[1].id | https://openalex.org/T14339 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Processing and 3D Reconstruction |
| topics[2].id | https://openalex.org/T10481 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9977999925613403 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1704 |
| topics[2].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[2].display_name | Computer Graphics and Visualization Techniques |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7547369003295898 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C174348530 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6584790349006653 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188635 |
| concepts[1].display_name | Bridging (networking) |
| concepts[2].id | https://openalex.org/C131979681 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6287190914154053 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[2].display_name | Point cloud |
| concepts[3].id | https://openalex.org/C167966045 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6115525960922241 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[3].display_name | Generative model |
| concepts[4].id | https://openalex.org/C39890363 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6045582890510559 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[4].display_name | Generative grammar |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5891790986061096 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2776359362 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5863466262817383 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[6].display_name | Representation (politics) |
| concepts[7].id | https://openalex.org/C2781238097 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5640001893043518 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[7].display_name | Object (grammar) |
| concepts[8].id | https://openalex.org/C117251300 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5105530023574829 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[8].display_name | Parametric statistics |
| concepts[9].id | https://openalex.org/C33676613 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4442563056945801 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[9].display_name | Dimension (graph theory) |
| concepts[10].id | https://openalex.org/C129641003 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4375700056552887 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q267189 |
| concepts[10].display_name | Active shape model |
| concepts[11].id | https://openalex.org/C26022165 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4226577579975128 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8091 |
| concepts[11].display_name | Grammar |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09548574686050415 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C199539241 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[13].display_name | Law |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C89600930 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[16].display_name | Segmentation |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C94625758 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[18].display_name | Politics |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| concepts[20].id | https://openalex.org/C202444582 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[20].display_name | Pure mathematics |
| concepts[21].id | https://openalex.org/C31258907 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[21].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7547369003295898 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/bridging |
| keywords[1].score | 0.6584790349006653 |
| keywords[1].display_name | Bridging (networking) |
| keywords[2].id | https://openalex.org/keywords/point-cloud |
| keywords[2].score | 0.6287190914154053 |
| keywords[2].display_name | Point cloud |
| keywords[3].id | https://openalex.org/keywords/generative-model |
| keywords[3].score | 0.6115525960922241 |
| keywords[3].display_name | Generative model |
| keywords[4].id | https://openalex.org/keywords/generative-grammar |
| keywords[4].score | 0.6045582890510559 |
| keywords[4].display_name | Generative grammar |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5891790986061096 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/representation |
| keywords[6].score | 0.5863466262817383 |
| keywords[6].display_name | Representation (politics) |
| keywords[7].id | https://openalex.org/keywords/object |
| keywords[7].score | 0.5640001893043518 |
| keywords[7].display_name | Object (grammar) |
| keywords[8].id | https://openalex.org/keywords/parametric-statistics |
| keywords[8].score | 0.5105530023574829 |
| keywords[8].display_name | Parametric statistics |
| keywords[9].id | https://openalex.org/keywords/dimension |
| keywords[9].score | 0.4442563056945801 |
| keywords[9].display_name | Dimension (graph theory) |
| keywords[10].id | https://openalex.org/keywords/active-shape-model |
| keywords[10].score | 0.4375700056552887 |
| keywords[10].display_name | Active shape model |
| keywords[11].id | https://openalex.org/keywords/grammar |
| keywords[11].score | 0.4226577579975128 |
| keywords[11].display_name | Grammar |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.09548574686050415 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/s24123874 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/24/12/3874/pdf?version=1718435344 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s24123874 |
| locations[1].id | pmid:38931658 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38931658 |
| locations[2].id | pmh:oai:doaj.org/article:92711062826940bd80bf5a5995df239a |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 24, Iss 12, p 3874 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/92711062826940bd80bf5a5995df239a |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11207756 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11207756 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100638052 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3393-7871 |
| authorships[0].author.display_name | Jincheng Zhang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102149020 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA |
| authorships[0].institutions[0].id | https://openalex.org/I102149020 |
| authorships[0].institutions[0].ror | https://ror.org/04dawnj30 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I102149020 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of North Carolina at Charlotte |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jincheng Zhang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA |
| authorships[1].author.id | https://openalex.org/A5022062855 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0756-2132 |
| authorships[1].author.display_name | Andrew Willis |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I102149020 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA |
| authorships[1].institutions[0].id | https://openalex.org/I102149020 |
| authorships[1].institutions[0].ror | https://ror.org/04dawnj30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I102149020 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of North Carolina at Charlotte |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Andrew R. Willis |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/24/12/3874/pdf?version=1718435344 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bridging Formal Shape Models and Deep Learning: A Novel Fusion for Understanding 3D Objects |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10719 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | 3D Shape Modeling and Analysis |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W4287117424, https://openalex.org/W4387506531, https://openalex.org/W4238433571, https://openalex.org/W3174044702, https://openalex.org/W2967848559, https://openalex.org/W4299831724 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s24123874 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/24/12/3874/pdf?version=1718435344 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s24123874 |
| primary_location.id | doi:10.3390/s24123874 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/24/12/3874/pdf?version=1718435344 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s24123874 |
| publication_date | 2024-06-15 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4376255178, https://openalex.org/W3141043576, https://openalex.org/W2546066744, https://openalex.org/W4386076143, https://openalex.org/W4312453532, https://openalex.org/W4390873331, https://openalex.org/W4386075859, https://openalex.org/W4386065402, https://openalex.org/W4379057393, https://openalex.org/W4316466570, https://openalex.org/W2161544510, https://openalex.org/W2917353844, https://openalex.org/W2102788774, https://openalex.org/W6697568864, https://openalex.org/W3156515262, https://openalex.org/W2163446794, https://openalex.org/W1998106614, https://openalex.org/W2115878665, https://openalex.org/W2007261304, https://openalex.org/W1984823902, https://openalex.org/W2093211258, https://openalex.org/W6755738469, https://openalex.org/W2103815986, https://openalex.org/W2803094405, https://openalex.org/W3108720268, https://openalex.org/W2533314323, https://openalex.org/W2156779366, https://openalex.org/W2893973919, https://openalex.org/W4312602860, https://openalex.org/W2119449517, https://openalex.org/W4214624153, https://openalex.org/W2291608650, https://openalex.org/W2041094000, https://openalex.org/W6674330103, https://openalex.org/W1923184257, https://openalex.org/W2594519801, https://openalex.org/W2898326065, https://openalex.org/W2095705004 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 3, 7, 35, 106 |
| abstract_inverted_index.3D | 26, 43, 80 |
| abstract_inverted_index.DL | 68, 118, 151 |
| abstract_inverted_index.an | 92, 124 |
| abstract_inverted_index.as | 48 |
| abstract_inverted_index.by | 153 |
| abstract_inverted_index.in | 53, 134 |
| abstract_inverted_index.of | 6, 25, 37, 75, 109, 113, 132, 136, 156, 170, 175, 179, 187 |
| abstract_inverted_index.to | 20, 63, 78, 86, 126, 142 |
| abstract_inverted_index.The | 182 |
| abstract_inverted_index.and | 28, 67, 95, 139, 167 |
| abstract_inverted_index.are | 46 |
| abstract_inverted_index.can | 165 |
| abstract_inverted_index.for | 11 |
| abstract_inverted_index.or, | 172 |
| abstract_inverted_index.the | 22, 29, 71, 76, 114, 129, 159, 168, 176, 180, 185, 188 |
| abstract_inverted_index.(3D) | 13 |
| abstract_inverted_index.(AI) | 122 |
| abstract_inverted_index.(DL) | 18 |
| abstract_inverted_index.PSML | 61, 84 |
| abstract_inverted_index.This | 0, 111, 145 |
| abstract_inverted_index.deep | 16 |
| abstract_inverted_index.each | 163 |
| abstract_inverted_index.free | 73 |
| abstract_inverted_index.into | 105 |
| abstract_inverted_index.over | 150, 191 |
| abstract_inverted_index.that | 90, 162 |
| abstract_inverted_index.with | 15, 117 |
| abstract_inverted_index.Shape | 55 |
| abstract_inverted_index.Users | 59, 82 |
| abstract_inverted_index.class | 94 |
| abstract_inverted_index.cloud | 40 |
| abstract_inverted_index.etc., | 104 |
| abstract_inverted_index.given | 34 |
| abstract_inverted_index.level | 169 |
| abstract_inverted_index.lists | 155 |
| abstract_inverted_index.model | 10, 116 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.other | 143 |
| abstract_inverted_index.point | 39 |
| abstract_inverted_index.rules | 89 |
| abstract_inverted_index.shape | 44, 49, 160 |
| abstract_inverted_index.size, | 102 |
| abstract_inverted_index.terms | 135 |
| abstract_inverted_index.their | 32, 137, 140 |
| abstract_inverted_index.write | 60, 83 |
| abstract_inverted_index.Formal | 42 |
| abstract_inverted_index.allows | 147 |
| abstract_inverted_index.better | 127 |
| abstract_inverted_index.define | 91 |
| abstract_inverted_index.detail | 171 |
| abstract_inverted_index.encode | 96 |
| abstract_inverted_index.formal | 9 |
| abstract_inverted_index.fusion | 5, 112 |
| abstract_inverted_index.latent | 177 |
| abstract_inverted_index.method | 190 |
| abstract_inverted_index.models | 45, 123 |
| abstract_inverted_index.object | 93, 97, 164 |
| abstract_inverted_index.offers | 119 |
| abstract_inverted_index.shape. | 181 |
| abstract_inverted_index.shapes | 14 |
| abstract_inverted_index.(PSML). | 58 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.between | 31 |
| abstract_inverted_index.complex | 65 |
| abstract_inverted_index.control | 149 |
| abstract_inverted_index.enforce | 87 |
| abstract_inverted_index.grammar | 50 |
| abstract_inverted_index.methods | 19 |
| abstract_inverted_index.objects | 27, 133 |
| abstract_inverted_index.program | 77 |
| abstract_inverted_index.results | 183 |
| abstract_inverted_index.shapes, | 100 |
| abstract_inverted_index.shapes. | 81 |
| abstract_inverted_index.written | 52 |
| abstract_inverted_index.Language | 57 |
| abstract_inverted_index.Modeling | 56 |
| abstract_inverted_index.approach | 146 |
| abstract_inverted_index.describe | 64 |
| abstract_inverted_index.estimate | 70 |
| abstract_inverted_index.exhibit, | 166 |
| abstract_inverted_index.generate | 79 |
| abstract_inverted_index.learning | 17 |
| abstract_inverted_index.networks | 69 |
| abstract_inverted_index.objects, | 66, 158 |
| abstract_inverted_index.objects. | 110, 144 |
| abstract_inverted_index.programs | 51, 62, 85 |
| abstract_inverted_index.proposed | 189 |
| abstract_inverted_index.candidate | 157 |
| abstract_inverted_index.competing | 192 |
| abstract_inverted_index.describes | 2 |
| abstract_inverted_index.dimension | 174 |
| abstract_inverted_index.estimates | 152 |
| abstract_inverted_index.geometric | 23, 130 |
| abstract_inverted_index.including | 99 |
| abstract_inverted_index.position, | 103 |
| abstract_inverted_index.structure | 24 |
| abstract_inverted_index.Procedural | 54 |
| abstract_inverted_index.advantages | 186 |
| abstract_inverted_index.artificial | 120 |
| abstract_inverted_index.collection | 36 |
| abstract_inverted_index.components | 138 |
| abstract_inverted_index.configured | 72 |
| abstract_inverted_index.generative | 8, 115 |
| abstract_inverted_index.parameters | 74 |
| abstract_inverted_index.parametric | 107 |
| abstract_inverted_index.specifying | 154 |
| abstract_inverted_index.understand | 21, 128 |
| abstract_inverted_index.variations | 161 |
| abstract_inverted_index.approaches. | 193 |
| abstract_inverted_index.attributes, | 98 |
| abstract_inverted_index.components, | 33, 101 |
| abstract_inverted_index.demonstrate | 184 |
| abstract_inverted_index.fundamental | 88 |
| abstract_inverted_index.implemented | 47 |
| abstract_inverted_index.opportunity | 125 |
| abstract_inverted_index.unorganized | 38 |
| abstract_inverted_index.intelligence | 121 |
| abstract_inverted_index.organization | 131 |
| abstract_inverted_index.equivalently, | 173 |
| abstract_inverted_index.measurements. | 41 |
| abstract_inverted_index.relationships | 30, 141 |
| abstract_inverted_index.representation | 108, 178 |
| abstract_inverted_index.human-in-the-loop | 148 |
| abstract_inverted_index.three-dimensional | 12 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5100638052 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I102149020 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.59590009 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |