Calibrated and Efficient Sampling-Free Confidence Estimation for LiDAR Scene Semantic Segmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.11935
Reliable deep learning models require not only accurate predictions but also well-calibrated confidence estimates to ensure dependable uncertainty estimation. This is crucial in safety-critical applications like autonomous driving, which depend on rapid and precise semantic segmentation of LiDAR point clouds for real-time 3D scene understanding. In this work, we introduce a sampling-free approach for estimating well-calibrated confidence values for classification tasks, achieving alignment with true classification accuracy and significantly reducing inference time compared to sampling-based methods. Our evaluation using the Adaptive Calibration Error (ACE) metric for LiDAR semantic segmentation shows that our approach maintains well-calibrated confidence values while achieving increased processing speed compared to a sampling baseline. Additionally, reliability diagrams reveal that our method produces underconfidence rather than overconfident predictions, an advantage for safety-critical applications. Our sampling-free approach offers well-calibrated and time-efficient predictions for LiDAR scene semantic segmentation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.11935
- https://arxiv.org/pdf/2411.11935
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404573375
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404573375Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.11935Digital Object Identifier
- Title
-
Calibrated and Efficient Sampling-Free Confidence Estimation for LiDAR Scene Semantic SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-18Full publication date if available
- Authors
-
Hanieh Shojaei Miandashti, Qianqian Zou, Claus BrennerList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.11935Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.11935Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.11935Direct OA link when available
- Concepts
-
Lidar, Segmentation, Computer science, Artificial intelligence, Estimation, Sampling (signal processing), Computer vision, Statistics, Remote sensing, Geography, Mathematics, Engineering, Filter (signal processing), Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404573375 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.11935 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.11935 |
| ids.openalex | https://openalex.org/W4404573375 |
| fwci | |
| type | preprint |
| title | Calibrated and Efficient Sampling-Free Confidence Estimation for LiDAR Scene Semantic Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9932000041007996 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.982200026512146 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T12549 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9818000197410583 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Object Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51399673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6647400856018066 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[0].display_name | Lidar |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6511594653129578 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6069760918617249 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.548186719417572 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C96250715 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5235628485679626 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[4].display_name | Estimation |
| concepts[5].id | https://openalex.org/C140779682 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5146647095680237 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[5].display_name | Sampling (signal processing) |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4509231746196747 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3279356360435486 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C62649853 |
| concepts[8].level | 1 |
| concepts[8].score | 0.28505390882492065 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[8].display_name | Remote sensing |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2472350001335144 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1696576178073883 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.06626248359680176 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C106131492 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[12].display_name | Filter (signal processing) |
| concepts[13].id | https://openalex.org/C201995342 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[13].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/lidar |
| keywords[0].score | 0.6647400856018066 |
| keywords[0].display_name | Lidar |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6511594653129578 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6069760918617249 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.548186719417572 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/estimation |
| keywords[4].score | 0.5235628485679626 |
| keywords[4].display_name | Estimation |
| keywords[5].id | https://openalex.org/keywords/sampling |
| keywords[5].score | 0.5146647095680237 |
| keywords[5].display_name | Sampling (signal processing) |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.4509231746196747 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.3279356360435486 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/remote-sensing |
| keywords[8].score | 0.28505390882492065 |
| keywords[8].display_name | Remote sensing |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.2472350001335144 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.1696576178073883 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.06626248359680176 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.11935 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.11935 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.11935 |
| locations[1].id | doi:10.48550/arxiv.2411.11935 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.11935 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114731409 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hanieh Shojaei Miandashti |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Miandashti, Hanieh Shojaei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085522455 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7673-0630 |
| authorships[1].author.display_name | Qianqian Zou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zou, Qianqian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016827109 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6459-0682 |
| authorships[2].author.display_name | Claus Brenner |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Brenner, Claus |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.11935 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Calibrated and Efficient Sampling-Free Confidence Estimation for LiDAR Scene Semantic Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9932000041007996 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4319317934, https://openalex.org/W2901265155, https://openalex.org/W2956374172, https://openalex.org/W4319837668, https://openalex.org/W4308071650, https://openalex.org/W3188333020, https://openalex.org/W4281783339, https://openalex.org/W1964041166, https://openalex.org/W4390887692, https://openalex.org/W3107697994 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.11935 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.11935 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.11935 |
| primary_location.id | pmh:oai:arXiv.org:2411.11935 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.11935 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.11935 |
| publication_date | 2024-11-18 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 50, 104 |
| abstract_inverted_index.3D | 42 |
| abstract_inverted_index.In | 45 |
| abstract_inverted_index.an | 120 |
| abstract_inverted_index.in | 22 |
| abstract_inverted_index.is | 20 |
| abstract_inverted_index.of | 36 |
| abstract_inverted_index.on | 30 |
| abstract_inverted_index.to | 14, 73, 103 |
| abstract_inverted_index.we | 48 |
| abstract_inverted_index.Our | 76, 125 |
| abstract_inverted_index.and | 32, 67, 130 |
| abstract_inverted_index.but | 9 |
| abstract_inverted_index.for | 40, 53, 58, 85, 122, 133 |
| abstract_inverted_index.not | 5 |
| abstract_inverted_index.our | 91, 112 |
| abstract_inverted_index.the | 79 |
| abstract_inverted_index.This | 19 |
| abstract_inverted_index.also | 10 |
| abstract_inverted_index.deep | 1 |
| abstract_inverted_index.like | 25 |
| abstract_inverted_index.only | 6 |
| abstract_inverted_index.than | 117 |
| abstract_inverted_index.that | 90, 111 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.time | 71 |
| abstract_inverted_index.true | 64 |
| abstract_inverted_index.with | 63 |
| abstract_inverted_index.(ACE) | 83 |
| abstract_inverted_index.Error | 82 |
| abstract_inverted_index.LiDAR | 37, 86, 134 |
| abstract_inverted_index.point | 38 |
| abstract_inverted_index.rapid | 31 |
| abstract_inverted_index.scene | 43, 135 |
| abstract_inverted_index.shows | 89 |
| abstract_inverted_index.speed | 101 |
| abstract_inverted_index.using | 78 |
| abstract_inverted_index.which | 28 |
| abstract_inverted_index.while | 97 |
| abstract_inverted_index.work, | 47 |
| abstract_inverted_index.clouds | 39 |
| abstract_inverted_index.depend | 29 |
| abstract_inverted_index.ensure | 15 |
| abstract_inverted_index.method | 113 |
| abstract_inverted_index.metric | 84 |
| abstract_inverted_index.models | 3 |
| abstract_inverted_index.offers | 128 |
| abstract_inverted_index.rather | 116 |
| abstract_inverted_index.reveal | 110 |
| abstract_inverted_index.tasks, | 60 |
| abstract_inverted_index.values | 57, 96 |
| abstract_inverted_index.crucial | 21 |
| abstract_inverted_index.precise | 33 |
| abstract_inverted_index.require | 4 |
| abstract_inverted_index.Adaptive | 80 |
| abstract_inverted_index.Reliable | 0 |
| abstract_inverted_index.accuracy | 66 |
| abstract_inverted_index.accurate | 7 |
| abstract_inverted_index.approach | 52, 92, 127 |
| abstract_inverted_index.compared | 72, 102 |
| abstract_inverted_index.diagrams | 109 |
| abstract_inverted_index.driving, | 27 |
| abstract_inverted_index.learning | 2 |
| abstract_inverted_index.methods. | 75 |
| abstract_inverted_index.produces | 114 |
| abstract_inverted_index.reducing | 69 |
| abstract_inverted_index.sampling | 105 |
| abstract_inverted_index.semantic | 34, 87, 136 |
| abstract_inverted_index.achieving | 61, 98 |
| abstract_inverted_index.advantage | 121 |
| abstract_inverted_index.alignment | 62 |
| abstract_inverted_index.baseline. | 106 |
| abstract_inverted_index.estimates | 13 |
| abstract_inverted_index.increased | 99 |
| abstract_inverted_index.inference | 70 |
| abstract_inverted_index.introduce | 49 |
| abstract_inverted_index.maintains | 93 |
| abstract_inverted_index.real-time | 41 |
| abstract_inverted_index.autonomous | 26 |
| abstract_inverted_index.confidence | 12, 56, 95 |
| abstract_inverted_index.dependable | 16 |
| abstract_inverted_index.estimating | 54 |
| abstract_inverted_index.evaluation | 77 |
| abstract_inverted_index.processing | 100 |
| abstract_inverted_index.Calibration | 81 |
| abstract_inverted_index.estimation. | 18 |
| abstract_inverted_index.predictions | 8, 132 |
| abstract_inverted_index.reliability | 108 |
| abstract_inverted_index.uncertainty | 17 |
| abstract_inverted_index.applications | 24 |
| abstract_inverted_index.predictions, | 119 |
| abstract_inverted_index.segmentation | 35, 88 |
| abstract_inverted_index.Additionally, | 107 |
| abstract_inverted_index.applications. | 124 |
| abstract_inverted_index.overconfident | 118 |
| abstract_inverted_index.sampling-free | 51, 126 |
| abstract_inverted_index.segmentation. | 137 |
| abstract_inverted_index.significantly | 68 |
| abstract_inverted_index.classification | 59, 65 |
| abstract_inverted_index.sampling-based | 74 |
| abstract_inverted_index.time-efficient | 131 |
| abstract_inverted_index.understanding. | 44 |
| abstract_inverted_index.safety-critical | 23, 123 |
| abstract_inverted_index.underconfidence | 115 |
| abstract_inverted_index.well-calibrated | 11, 55, 94, 129 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |