Calibrating Constitutive Models with Full-Field Data via Physics Informed Neural Networks Article Swipe
Craig M. Hamel
,
Sharlotte Kramer
,
Kevin Long
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.2172/2430550
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.2172/2430550
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2172/2430550
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401778238
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401778238Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2172/2430550Digital Object Identifier
- Title
-
Calibrating Constitutive Models with Full-Field Data via Physics Informed Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-01Full publication date if available
- Authors
-
Craig M. Hamel, Sharlotte Kramer, Kevin LongList of authors in order
- Landing page
-
https://doi.org/10.2172/2430550Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/2430550Direct OA link when available
- Concepts
-
Artificial neural network, Field (mathematics), Computer science, Calibration, Artificial intelligence, Physics, Mathematics, Quantum mechanics, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401778238 |
|---|---|
| doi | https://doi.org/10.2172/2430550 |
| ids.doi | https://doi.org/10.2172/2430550 |
| ids.openalex | https://openalex.org/W4401778238 |
| fwci | 0.64702553 |
| type | article |
| title | Calibrating Constitutive Models with Full-Field Data via Physics Informed Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9749000072479248 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T10892 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9610000252723694 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Drilling and Well Engineering |
| topics[2].id | https://openalex.org/T10635 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9528999924659729 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Hydraulic Fracturing and Reservoir Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6506244540214539 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C9652623 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5621316432952881 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[1].display_name | Field (mathematics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5221334099769592 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C165838908 |
| concepts[3].level | 2 |
| concepts[3].score | 0.41672176122665405 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q736777 |
| concepts[3].display_name | Calibration |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.29720914363861084 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2745593190193176 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.11658307909965515 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C62520636 |
| concepts[7].level | 1 |
| concepts[7].score | 0.09862759709358215 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[7].display_name | Quantum mechanics |
| concepts[8].id | https://openalex.org/C202444582 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[8].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.6506244540214539 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/field |
| keywords[1].score | 0.5621316432952881 |
| keywords[1].display_name | Field (mathematics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5221334099769592 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/calibration |
| keywords[3].score | 0.41672176122665405 |
| keywords[3].display_name | Calibration |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.29720914363861084 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.2745593190193176 |
| keywords[5].display_name | Physics |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.11658307909965515 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[7].score | 0.09862759709358215 |
| keywords[7].display_name | Quantum mechanics |
| language | en |
| locations[0].id | doi:10.2172/2430550 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | U.S. National Congress on Computational Mechanics - Albuquerque, New Mexico, United States of America - July - 2023 |
| locations[0].landing_page_url | https://doi.org/10.2172/2430550 |
| locations[1].id | pmh:oai:osti.gov:2430550 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/2430550 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5077137773 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4086-9010 |
| authorships[0].author.display_name | Craig M. Hamel |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210104735 |
| authorships[0].affiliations[0].raw_affiliation_string | Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) |
| authorships[0].institutions[0].id | https://openalex.org/I4210104735 |
| authorships[0].institutions[0].ror | https://ror.org/01apwpt12 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I198811213, https://openalex.org/I4210104735 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Sandia National Laboratories |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Craig Hamel |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) |
| authorships[1].author.id | https://openalex.org/A5042876256 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6015-8385 |
| authorships[1].author.display_name | Sharlotte Kramer |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210104735 |
| authorships[1].affiliations[0].raw_affiliation_string | Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) |
| authorships[1].institutions[0].id | https://openalex.org/I4210104735 |
| authorships[1].institutions[0].ror | https://ror.org/01apwpt12 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I198811213, https://openalex.org/I4210104735 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Sandia National Laboratories |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sharlotte Kramer |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) |
| authorships[2].author.id | https://openalex.org/A5028160509 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4718-4161 |
| authorships[2].author.display_name | Kevin Long |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210104735 |
| authorships[2].affiliations[0].raw_affiliation_string | Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) |
| authorships[2].institutions[0].id | https://openalex.org/I4210104735 |
| authorships[2].institutions[0].ror | https://ror.org/01apwpt12 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I198811213, https://openalex.org/I4210104735 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Sandia National Laboratories |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Kevin Long |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/2430550 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Calibrating Constitutive Models with Full-Field Data via Physics Informed Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9749000072479248 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4395014643 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:2430550 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/2430550 |
| primary_location.id | doi:10.2172/2430550 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | U.S. National Congress on Computational Mechanics - Albuquerque, New Mexico, United States of America - July - 2023 |
| primary_location.landing_page_url | https://doi.org/10.2172/2430550 |
| publication_date | 2023-07-01 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.69113968 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |