Calibration of chemical sensors in mobile wireless networks Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2006.12381
Low-power chemical sensors deployed on mobile platforms make it possible to monitor pollutant concentrations across large urban areas. However, chemical sensors are prone to drift (e.g., aging, damage, poisoning) and have to be calibrated periodically. In this paper, we present an opportunistic calibration approach that relies on encounters between sensors; when in vicinity of each other, sensors exchange measurements and use the accumulated information to re-calibrate. We formulate the calibration process as weighted least-squares, where the most recent measurements are assigned the highest weights. We model the weights with an exponential decay function (in time) and optimize the decay constant using simulated annealing (SA). We validated the proposed method on a simulated sensor network with the sensors' mobility driven by random-waypoint (RWP) models. We present results in terms of average calibration errors for different weight functions, and network sizes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2006.12381
- https://arxiv.org/pdf/2006.12381
- OA Status
- green
- References
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3036761389
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3036761389Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2006.12381Digital Object Identifier
- Title
-
Calibration of chemical sensors in mobile wireless networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-17Full publication date if available
- Authors
-
Rakesh Gosangi, Harsha Chenji, Radu Stoleru, Ricardo Gutiérrez‐OsunaList of authors in order
- Landing page
-
https://arxiv.org/abs/2006.12381Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2006.12381Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2006.12381Direct OA link when available
- Concepts
-
Calibration, Waypoint, Wireless sensor network, Computer science, Real-time computing, Environmental science, Remote sensing, Mathematics, Statistics, Geography, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
1Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3036761389 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2006.12381 |
| ids.doi | https://doi.org/10.48550/arxiv.2006.12381 |
| ids.mag | 3036761389 |
| ids.openalex | https://openalex.org/W3036761389 |
| fwci | |
| type | preprint |
| title | Calibration of chemical sensors in mobile wireless networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11667 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9936000108718872 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Advanced Chemical Sensor Technologies |
| topics[1].id | https://openalex.org/T10080 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9897000193595886 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Energy Efficient Wireless Sensor Networks |
| topics[2].id | https://openalex.org/T12120 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9819999933242798 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Air Quality Monitoring and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165838908 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7190958857536316 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q736777 |
| concepts[0].display_name | Calibration |
| concepts[1].id | https://openalex.org/C2781271823 |
| concepts[1].level | 2 |
| concepts[1].score | 0.585907518863678 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q138081 |
| concepts[1].display_name | Waypoint |
| concepts[2].id | https://openalex.org/C24590314 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5449357032775879 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[2].display_name | Wireless sensor network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5230544805526733 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C79403827 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4589768946170807 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[4].display_name | Real-time computing |
| concepts[5].id | https://openalex.org/C39432304 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3594054579734802 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[5].display_name | Environmental science |
| concepts[6].id | https://openalex.org/C62649853 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33254915475845337 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[6].display_name | Remote sensing |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1810794472694397 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15665385127067566 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.13490337133407593 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13220229744911194 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/calibration |
| keywords[0].score | 0.7190958857536316 |
| keywords[0].display_name | Calibration |
| keywords[1].id | https://openalex.org/keywords/waypoint |
| keywords[1].score | 0.585907518863678 |
| keywords[1].display_name | Waypoint |
| keywords[2].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[2].score | 0.5449357032775879 |
| keywords[2].display_name | Wireless sensor network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5230544805526733 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/real-time-computing |
| keywords[4].score | 0.4589768946170807 |
| keywords[4].display_name | Real-time computing |
| keywords[5].id | https://openalex.org/keywords/environmental-science |
| keywords[5].score | 0.3594054579734802 |
| keywords[5].display_name | Environmental science |
| keywords[6].id | https://openalex.org/keywords/remote-sensing |
| keywords[6].score | 0.33254915475845337 |
| keywords[6].display_name | Remote sensing |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.1810794472694397 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.15665385127067566 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.13490337133407593 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/computer-network |
| keywords[10].score | 0.13220229744911194 |
| keywords[10].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2006.12381 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2006.12381 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2006.12381 |
| locations[1].id | doi:10.48550/arxiv.2006.12381 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2006.12381 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5060144057 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9135-2129 |
| authorships[0].author.display_name | Rakesh Gosangi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rakesh Gosangi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006259183 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3272-7020 |
| authorships[1].author.display_name | Harsha Chenji |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Harsha Chenji |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083949715 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3976-4502 |
| authorships[2].author.display_name | Radu Stoleru |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I91045830 |
| authorships[2].affiliations[0].raw_affiliation_string | †Texas A&M University |
| authorships[2].institutions[0].id | https://openalex.org/I91045830 |
| authorships[2].institutions[0].ror | https://ror.org/01f5ytq51 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91045830 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Texas A&M University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Radu Stoleru |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | †Texas A&M University |
| authorships[3].author.id | https://openalex.org/A5062423099 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2817-2085 |
| authorships[3].author.display_name | Ricardo Gutiérrez‐Osuna |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ricardo Gutierrez-Osuna |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2006.12381 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Calibration of chemical sensors in mobile wireless networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11667 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9936000108718872 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Advanced Chemical Sensor Technologies |
| related_works | https://openalex.org/W2688471429, https://openalex.org/W4360939124, https://openalex.org/W2077345734, https://openalex.org/W2899287767, https://openalex.org/W2275928629, https://openalex.org/W2612848489, https://openalex.org/W2915444871, https://openalex.org/W2096610529, https://openalex.org/W1978127373, https://openalex.org/W4389545179 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2006.12381 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2006.12381 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2006.12381 |
| primary_location.id | pmh:oai:arXiv.org:2006.12381 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2006.12381 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2006.12381 |
| publication_date | 2020-06-17 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W592796669 |
| referenced_works_count | 1 |
| abstract_inverted_index.a | 110 |
| abstract_inverted_index.In | 35 |
| abstract_inverted_index.We | 66, 84, 104, 123 |
| abstract_inverted_index.an | 40, 89 |
| abstract_inverted_index.as | 71 |
| abstract_inverted_index.be | 32 |
| abstract_inverted_index.by | 119 |
| abstract_inverted_index.in | 51, 126 |
| abstract_inverted_index.it | 8 |
| abstract_inverted_index.of | 53, 128 |
| abstract_inverted_index.on | 4, 46, 109 |
| abstract_inverted_index.to | 10, 23, 31, 64 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.(in | 93 |
| abstract_inverted_index.and | 29, 59, 95, 136 |
| abstract_inverted_index.are | 21, 79 |
| abstract_inverted_index.for | 132 |
| abstract_inverted_index.the | 61, 68, 75, 81, 86, 97, 106, 115 |
| abstract_inverted_index.use | 60 |
| abstract_inverted_index.each | 54 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.make | 7 |
| abstract_inverted_index.most | 76 |
| abstract_inverted_index.that | 44 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.when | 50 |
| abstract_inverted_index.with | 88, 114 |
| abstract_inverted_index.(RWP) | 121 |
| abstract_inverted_index.(SA). | 103 |
| abstract_inverted_index.decay | 91, 98 |
| abstract_inverted_index.drift | 24 |
| abstract_inverted_index.large | 15 |
| abstract_inverted_index.model | 85 |
| abstract_inverted_index.prone | 22 |
| abstract_inverted_index.terms | 127 |
| abstract_inverted_index.time) | 94 |
| abstract_inverted_index.urban | 16 |
| abstract_inverted_index.using | 100 |
| abstract_inverted_index.where | 74 |
| abstract_inverted_index.(e.g., | 25 |
| abstract_inverted_index.across | 14 |
| abstract_inverted_index.aging, | 26 |
| abstract_inverted_index.areas. | 17 |
| abstract_inverted_index.driven | 118 |
| abstract_inverted_index.errors | 131 |
| abstract_inverted_index.method | 108 |
| abstract_inverted_index.mobile | 5 |
| abstract_inverted_index.other, | 55 |
| abstract_inverted_index.paper, | 37 |
| abstract_inverted_index.recent | 77 |
| abstract_inverted_index.relies | 45 |
| abstract_inverted_index.sensor | 112 |
| abstract_inverted_index.sizes. | 138 |
| abstract_inverted_index.weight | 134 |
| abstract_inverted_index.average | 129 |
| abstract_inverted_index.between | 48 |
| abstract_inverted_index.damage, | 27 |
| abstract_inverted_index.highest | 82 |
| abstract_inverted_index.models. | 122 |
| abstract_inverted_index.monitor | 11 |
| abstract_inverted_index.network | 113, 137 |
| abstract_inverted_index.present | 39, 124 |
| abstract_inverted_index.process | 70 |
| abstract_inverted_index.results | 125 |
| abstract_inverted_index.sensors | 2, 20, 56 |
| abstract_inverted_index.weights | 87 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.approach | 43 |
| abstract_inverted_index.assigned | 80 |
| abstract_inverted_index.chemical | 1, 19 |
| abstract_inverted_index.constant | 99 |
| abstract_inverted_index.deployed | 3 |
| abstract_inverted_index.exchange | 57 |
| abstract_inverted_index.function | 92 |
| abstract_inverted_index.mobility | 117 |
| abstract_inverted_index.optimize | 96 |
| abstract_inverted_index.possible | 9 |
| abstract_inverted_index.proposed | 107 |
| abstract_inverted_index.sensors' | 116 |
| abstract_inverted_index.sensors; | 49 |
| abstract_inverted_index.vicinity | 52 |
| abstract_inverted_index.weighted | 72 |
| abstract_inverted_index.weights. | 83 |
| abstract_inverted_index.Low-power | 0 |
| abstract_inverted_index.annealing | 102 |
| abstract_inverted_index.different | 133 |
| abstract_inverted_index.formulate | 67 |
| abstract_inverted_index.platforms | 6 |
| abstract_inverted_index.pollutant | 12 |
| abstract_inverted_index.simulated | 101, 111 |
| abstract_inverted_index.validated | 105 |
| abstract_inverted_index.calibrated | 33 |
| abstract_inverted_index.encounters | 47 |
| abstract_inverted_index.functions, | 135 |
| abstract_inverted_index.poisoning) | 28 |
| abstract_inverted_index.accumulated | 62 |
| abstract_inverted_index.calibration | 42, 69, 130 |
| abstract_inverted_index.exponential | 90 |
| abstract_inverted_index.information | 63 |
| abstract_inverted_index.measurements | 58, 78 |
| abstract_inverted_index.opportunistic | 41 |
| abstract_inverted_index.periodically. | 34 |
| abstract_inverted_index.re-calibrate. | 65 |
| abstract_inverted_index.concentrations | 13 |
| abstract_inverted_index.least-squares, | 73 |
| abstract_inverted_index.random-waypoint | 120 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |