CALLIC: Content Adaptive Learning for Lossless Image Compression Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v39i5.32494
Learned lossless image compression has achieved significant advancements in recent years. However, existing methods often rely on training amortized generative models on massive datasets, resulting in sub-optimal probability distribution estimation for specific testing images during encoding process. To address this challenge, we explore the connection between the Minimum Description Length (MDL) principle and Parameter-Efficient Transfer Learning (PETL), leading to the development of a novel content-adaptive approach for learned lossless image compression, dubbed CALLIC. Specifically, we first propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations, termed Masked Gated ConvFormer (MGCF), and pretrain MGCF on training dataset. Cache then Crop Inference (CCI) is proposed to accelerate the coding process. During encoding, we decompose pretrained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT). RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time. Extensive experiments across diverse datasets demonstrate that CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v39i5.32494
- https://ojs.aaai.org/index.php/AAAI/article/download/32494/34649
- OA Status
- diamond
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409367330
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409367330Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v39i5.32494Digital Object Identifier
- Title
-
CALLIC: Content Adaptive Learning for Lossless Image CompressionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-11Full publication date if available
- Authors
-
Daxin Li, Yuanchao Bai, Kai Wang, Junjun Jiang, Xianming Liu, Wen GaoList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v39i5.32494Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/32494/34649Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/32494/34649Direct OA link when available
- Concepts
-
Lossless compression, Computer science, Image compression, Content (measure theory), Artificial intelligence, Data compression, Computer vision, Image (mathematics), Image processing, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409367330 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v39i5.32494 |
| ids.doi | https://doi.org/10.1609/aaai.v39i5.32494 |
| ids.openalex | https://openalex.org/W4409367330 |
| fwci | 5.50240386 |
| type | article |
| title | CALLIC: Content Adaptive Learning for Lossless Image Compression |
| biblio.issue | 5 |
| biblio.volume | 39 |
| biblio.last_page | 4688 |
| biblio.first_page | 4679 |
| topics[0].id | https://openalex.org/T10901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Data Compression Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81081738 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8310348987579346 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q55542 |
| concepts[0].display_name | Lossless compression |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.604856014251709 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C13481523 |
| concepts[2].level | 4 |
| concepts[2].score | 0.597467303276062 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q412438 |
| concepts[2].display_name | Image compression |
| concepts[3].id | https://openalex.org/C2778152352 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5214293003082275 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165061 |
| concepts[3].display_name | Content (measure theory) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4105762541294098 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C78548338 |
| concepts[5].level | 2 |
| concepts[5].score | 0.38919779658317566 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[5].display_name | Data compression |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38666030764579773 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3741183280944824 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C9417928 |
| concepts[8].level | 3 |
| concepts[8].score | 0.20602065324783325 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[8].display_name | Image processing |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.17691227793693542 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/lossless-compression |
| keywords[0].score | 0.8310348987579346 |
| keywords[0].display_name | Lossless compression |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.604856014251709 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/image-compression |
| keywords[2].score | 0.597467303276062 |
| keywords[2].display_name | Image compression |
| keywords[3].id | https://openalex.org/keywords/content |
| keywords[3].score | 0.5214293003082275 |
| keywords[3].display_name | Content (measure theory) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4105762541294098 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/data-compression |
| keywords[5].score | 0.38919779658317566 |
| keywords[5].display_name | Data compression |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.38666030764579773 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.3741183280944824 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/image-processing |
| keywords[8].score | 0.20602065324783325 |
| keywords[8].display_name | Image processing |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.17691227793693542 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1609/aaai.v39i5.32494 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/32494/34649 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v39i5.32494 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007227942 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-6886-3342 |
| authorships[0].author.display_name | Daxin Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daxin Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5024093994 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3449-6537 |
| authorships[1].author.display_name | Yuanchao Bai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuanchao Bai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100766811 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-3132-0495 |
| authorships[2].author.display_name | Kai Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kai Wang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5087165831 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5694-505X |
| authorships[3].author.display_name | Junjun Jiang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Junjun Jiang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100654390 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8857-1785 |
| authorships[4].author.display_name | Xianming Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xianming Liu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5018478553 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8070-802X |
| authorships[5].author.display_name | Wen Gao |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wen Gao |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/32494/34649 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CALLIC: Content Adaptive Learning for Lossless Image Compression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Data Compression Techniques |
| related_works | https://openalex.org/W2948148442, https://openalex.org/W3210332869, https://openalex.org/W2461250372, https://openalex.org/W2521595930, https://openalex.org/W4313046148, https://openalex.org/W2751842002, https://openalex.org/W2161981399, https://openalex.org/W3180760233, https://openalex.org/W2096442341, https://openalex.org/W4210455546 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v39i5.32494 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/32494/34649 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v39i5.32494 |
| primary_location.id | doi:10.1609/aaai.v39i5.32494 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/32494/34649 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v39i5.32494 |
| publication_date | 2025-04-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 62, 77, 167 |
| abstract_inverted_index.To | 37 |
| abstract_inverted_index.by | 82, 131, 148 |
| abstract_inverted_index.in | 8, 25, 145 |
| abstract_inverted_index.is | 103 |
| abstract_inverted_index.of | 61 |
| abstract_inverted_index.on | 16, 21, 95, 128 |
| abstract_inverted_index.to | 58, 105 |
| abstract_inverted_index.we | 41, 74, 112 |
| abstract_inverted_index.and | 52, 92, 122, 154 |
| abstract_inverted_index.are | 143 |
| abstract_inverted_index.for | 30, 66, 171 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.new | 168 |
| abstract_inverted_index.the | 43, 46, 59, 107, 125 |
| abstract_inverted_index.Crop | 100 |
| abstract_inverted_index.MGCF | 94 |
| abstract_inverted_index.RPFT | 136 |
| abstract_inverted_index.rely | 15 |
| abstract_inverted_index.sets | 166 |
| abstract_inverted_index.that | 142, 164 |
| abstract_inverted_index.then | 99, 123 |
| abstract_inverted_index.this | 39 |
| abstract_inverted_index.with | 138 |
| abstract_inverted_index.(CCI) | 102 |
| abstract_inverted_index.(MDL) | 50 |
| abstract_inverted_index.Cache | 98 |
| abstract_inverted_index.Gated | 89 |
| abstract_inverted_index.adapt | 124 |
| abstract_inverted_index.first | 75 |
| abstract_inverted_index.image | 2, 69, 130, 174 |
| abstract_inverted_index.novel | 63 |
| abstract_inverted_index.often | 14 |
| abstract_inverted_index.order | 147 |
| abstract_inverted_index.time. | 157 |
| abstract_inverted_index.using | 119 |
| abstract_inverted_index.(SOTA) | 170 |
| abstract_inverted_index.CALLIC | 165 |
| abstract_inverted_index.During | 110 |
| abstract_inverted_index.Length | 49 |
| abstract_inverted_index.Masked | 88 |
| abstract_inverted_index.across | 160 |
| abstract_inverted_index.coding | 108 |
| abstract_inverted_index.dubbed | 71 |
| abstract_inverted_index.during | 34 |
| abstract_inverted_index.gating | 85 |
| abstract_inverted_index.images | 33 |
| abstract_inverted_index.models | 20 |
| abstract_inverted_index.recent | 9 |
| abstract_inverted_index.sorted | 144 |
| abstract_inverted_index.termed | 87 |
| abstract_inverted_index.years. | 10 |
| abstract_inverted_index.(MGCF), | 91 |
| abstract_inverted_index.(PETL), | 56 |
| abstract_inverted_index.(RPFT). | 135 |
| abstract_inverted_index.CALLIC. | 72 |
| abstract_inverted_index.Learned | 0 |
| abstract_inverted_index.Minimum | 47 |
| abstract_inverted_index.address | 38 |
| abstract_inverted_index.between | 45 |
| abstract_inverted_index.diverse | 161 |
| abstract_inverted_index.explore | 42 |
| abstract_inverted_index.layers, | 115 |
| abstract_inverted_index.leading | 57 |
| abstract_inverted_index.learned | 67, 172 |
| abstract_inverted_index.massive | 22 |
| abstract_inverted_index.methods | 13 |
| abstract_inverted_index.patches | 141 |
| abstract_inverted_index.process | 153 |
| abstract_inverted_index.propose | 76 |
| abstract_inverted_index.testing | 32, 129 |
| abstract_inverted_index.weights | 127 |
| abstract_inverted_index.However, | 11 |
| abstract_inverted_index.Learning | 55 |
| abstract_inverted_index.Transfer | 54 |
| abstract_inverted_index.achieved | 5 |
| abstract_inverted_index.approach | 65 |
| abstract_inverted_index.dataset. | 97 |
| abstract_inverted_index.datasets | 162 |
| abstract_inverted_index.encoding | 35 |
| abstract_inverted_index.entropy, | 150 |
| abstract_inverted_index.existing | 12 |
| abstract_inverted_index.learning | 152 |
| abstract_inverted_index.lossless | 1, 68, 173 |
| abstract_inverted_index.low-rank | 120 |
| abstract_inverted_index.matrices | 121 |
| abstract_inverted_index.pretrain | 93 |
| abstract_inverted_index.process. | 36, 109 |
| abstract_inverted_index.proposed | 104 |
| abstract_inverted_index.reducing | 155 |
| abstract_inverted_index.specific | 31 |
| abstract_inverted_index.training | 17, 96 |
| abstract_inverted_index.Extensive | 158 |
| abstract_inverted_index.Inference | 101 |
| abstract_inverted_index.amortized | 18 |
| abstract_inverted_index.datasets, | 23 |
| abstract_inverted_index.decompose | 113 |
| abstract_inverted_index.encoding, | 111 |
| abstract_inverted_index.estimated | 149 |
| abstract_inverted_index.gradually | 139 |
| abstract_inverted_index.including | 116 |
| abstract_inverted_index.mechanism | 81 |
| abstract_inverted_index.principle | 51 |
| abstract_inverted_index.resulting | 24 |
| abstract_inverted_index.ConvFormer | 90 |
| abstract_inverted_index.accelerate | 106 |
| abstract_inverted_index.adaptation | 156 |
| abstract_inverted_index.challenge, | 40 |
| abstract_inverted_index.connection | 44 |
| abstract_inverted_index.depth-wise | 117 |
| abstract_inverted_index.descending | 146 |
| abstract_inverted_index.estimation | 29 |
| abstract_inverted_index.fine-tunes | 137 |
| abstract_inverted_index.generative | 19 |
| abstract_inverted_index.increasing | 140 |
| abstract_inverted_index.leveraging | 83 |
| abstract_inverted_index.optimizing | 151 |
| abstract_inverted_index.pretrained | 114 |
| abstract_inverted_index.Description | 48 |
| abstract_inverted_index.Fine-Tuning | 134 |
| abstract_inverted_index.Progressive | 133 |
| abstract_inverted_index.Rate-guided | 132 |
| abstract_inverted_index.compression | 3 |
| abstract_inverted_index.demonstrate | 163 |
| abstract_inverted_index.development | 60 |
| abstract_inverted_index.experiments | 159 |
| abstract_inverted_index.incremental | 126 |
| abstract_inverted_index.operations, | 86 |
| abstract_inverted_index.probability | 27 |
| abstract_inverted_index.significant | 6 |
| abstract_inverted_index.sub-optimal | 26 |
| abstract_inverted_index.advancements | 7 |
| abstract_inverted_index.compression, | 70 |
| abstract_inverted_index.compression. | 175 |
| abstract_inverted_index.distribution | 28 |
| abstract_inverted_index.Specifically, | 73 |
| abstract_inverted_index.content-aware | 78 |
| abstract_inverted_index.convolutional | 84 |
| abstract_inverted_index.convolutions, | 118 |
| abstract_inverted_index.autoregressive | 79 |
| abstract_inverted_index.self-attention | 80 |
| abstract_inverted_index.content-adaptive | 64 |
| abstract_inverted_index.state-of-the-art | 169 |
| abstract_inverted_index.Parameter-Efficient | 53 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.90012642 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |