CALM Before the STORM: Unlocking Native Reasoning for Optimization Modeling Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.04204
Large Reasoning Models (LRMs) have demonstrated strong capabilities in complex multi-step reasoning, opening new opportunities for automating optimization modeling. However, existing domain adaptation methods, originally designed for earlier instruction-tuned models, often fail to exploit the advanced reasoning patterns of modern LRMs -- In particular, we show that direct fine-tuning on traditional \textit{non-reflective} datasets leads to limited gains. To fully leverage LRMs' inherent reasoning abilities, we propose \textbf{CALM} (\textit{Corrective Adaptation with Lightweight Modification}), a framework that progressively refines LRMs within their native reasoning modes for optimization modeling tasks. In CALM, an expert intervener identifies reasoning flaws and provides concise corrective hints, which the LRM incorporates to produce improved reasoning trajectories. These interventions modify fewer than 2.6\% of generated tokens, but generate high-quality data for soft adaptation through supervised fine-tuning. The adapted model is then further improved through reinforcement learning. Building on CALM, we develop \textbf{STORM} (\textit{Smart Thinking Optimization Reasoning Model}), a 4B-parameter LRM that achieves a new state-of-the-art average accuracy of 68.9\% across five popular optimization modeling benchmarks, matching the performance of a 671B LRM. These results demonstrate that dynamic, hint-based data synthesis both preserves and amplifies the native reasoning patterns of modern LRMs, offering a more effective and scalable path towards expert-level performance on challenging optimization modeling tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2510.04204
- https://arxiv.org/pdf/2510.04204
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414971175
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414971175Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.04204Digital Object Identifier
- Title
-
CALM Before the STORM: Unlocking Native Reasoning for Optimization ModelingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-05Full publication date if available
- Authors
-
Zhengyang Tang, Zihan Ye, Chenyu Huang, X. H. Hilda Huang, Chengpeng Li, S. X. Li, GuanHua Chen, Ming Yan, Zizhuo Wang, Hao Zha, Dayiheng Liu, Bo WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.04204Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.04204Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.04204Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414971175 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.04204 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.04204 |
| ids.openalex | https://openalex.org/W4414971175 |
| fwci | |
| type | preprint |
| title | CALM Before the STORM: Unlocking Native Reasoning for Optimization Modeling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11195 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9017999768257141 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Simulation Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2510.04204 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.04204 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.04204 |
| locations[1].id | doi:10.48550/arxiv.2510.04204 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.04204 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5109434969 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhengyang Tang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tang, Zhengyang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5001112243 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zihan Ye |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ye, Zihan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5039173855 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6360-638X |
| authorships[2].author.display_name | Chenyu Huang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huang, Chenyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5030988875 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6381-3242 |
| authorships[3].author.display_name | X. H. Hilda Huang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huang, Xuhan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5108666977 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Chengpeng Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Chengpeng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5032515490 |
| authorships[5].author.orcid | https://orcid.org/0009-0007-9688-3651 |
| authorships[5].author.display_name | S. X. Li |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Li, Sihang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100665980 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5015-0902 |
| authorships[6].author.display_name | GuanHua Chen |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chen, Guanhua |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5101502057 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1751-2788 |
| authorships[7].author.display_name | Ming Yan |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yan, Ming |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5085882173 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0828-7280 |
| authorships[8].author.display_name | Zizhuo Wang |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Wang, Zizhuo |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5073273117 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-5416-6557 |
| authorships[9].author.display_name | Hao Zha |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Zha, Hongyuan |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5062188134 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-8755-8941 |
| authorships[10].author.display_name | Dayiheng Liu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Liu, Dayiheng |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5100408076 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-2918-1912 |
| authorships[11].author.display_name | Bo Wang |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Wang, Benyou |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.04204 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-09T00:00:00 |
| display_name | CALM Before the STORM: Unlocking Native Reasoning for Optimization Modeling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11195 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9017999768257141 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Simulation Techniques and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.04204 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.04204 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.04204 |
| primary_location.id | pmh:oai:arXiv.org:2510.04204 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.04204 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.04204 |
| publication_date | 2025-10-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 72, 149, 154, 171, 194 |
| abstract_inverted_index.-- | 41 |
| abstract_inverted_index.In | 42, 87 |
| abstract_inverted_index.To | 57 |
| abstract_inverted_index.an | 89 |
| abstract_inverted_index.in | 8 |
| abstract_inverted_index.is | 131 |
| abstract_inverted_index.of | 38, 115, 159, 170, 190 |
| abstract_inverted_index.on | 49, 139, 203 |
| abstract_inverted_index.to | 32, 54, 104 |
| abstract_inverted_index.we | 44, 64, 141 |
| abstract_inverted_index.LRM | 102, 151 |
| abstract_inverted_index.The | 128 |
| abstract_inverted_index.and | 95, 184, 197 |
| abstract_inverted_index.but | 118 |
| abstract_inverted_index.for | 15, 26, 83, 122 |
| abstract_inverted_index.new | 13, 155 |
| abstract_inverted_index.the | 34, 101, 168, 186 |
| abstract_inverted_index.671B | 172 |
| abstract_inverted_index.LRM. | 173 |
| abstract_inverted_index.LRMs | 40, 77 |
| abstract_inverted_index.both | 182 |
| abstract_inverted_index.data | 121, 180 |
| abstract_inverted_index.fail | 31 |
| abstract_inverted_index.five | 162 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.more | 195 |
| abstract_inverted_index.path | 199 |
| abstract_inverted_index.show | 45 |
| abstract_inverted_index.soft | 123 |
| abstract_inverted_index.than | 113 |
| abstract_inverted_index.that | 46, 74, 152, 177 |
| abstract_inverted_index.then | 132 |
| abstract_inverted_index.with | 69 |
| abstract_inverted_index.2.6\% | 114 |
| abstract_inverted_index.CALM, | 88, 140 |
| abstract_inverted_index.LRMs' | 60 |
| abstract_inverted_index.LRMs, | 192 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.These | 109, 174 |
| abstract_inverted_index.fewer | 112 |
| abstract_inverted_index.flaws | 94 |
| abstract_inverted_index.fully | 58 |
| abstract_inverted_index.leads | 53 |
| abstract_inverted_index.model | 130 |
| abstract_inverted_index.modes | 82 |
| abstract_inverted_index.often | 30 |
| abstract_inverted_index.their | 79 |
| abstract_inverted_index.which | 100 |
| abstract_inverted_index.(LRMs) | 3 |
| abstract_inverted_index.68.9\% | 160 |
| abstract_inverted_index.Models | 2 |
| abstract_inverted_index.across | 161 |
| abstract_inverted_index.direct | 47 |
| abstract_inverted_index.domain | 21 |
| abstract_inverted_index.expert | 90 |
| abstract_inverted_index.gains. | 56 |
| abstract_inverted_index.hints, | 99 |
| abstract_inverted_index.modern | 39, 191 |
| abstract_inverted_index.modify | 111 |
| abstract_inverted_index.native | 80, 187 |
| abstract_inverted_index.strong | 6 |
| abstract_inverted_index.tasks. | 86, 207 |
| abstract_inverted_index.within | 78 |
| abstract_inverted_index.adapted | 129 |
| abstract_inverted_index.average | 157 |
| abstract_inverted_index.complex | 9 |
| abstract_inverted_index.concise | 97 |
| abstract_inverted_index.develop | 142 |
| abstract_inverted_index.earlier | 27 |
| abstract_inverted_index.exploit | 33 |
| abstract_inverted_index.further | 133 |
| abstract_inverted_index.limited | 55 |
| abstract_inverted_index.models, | 29 |
| abstract_inverted_index.opening | 12 |
| abstract_inverted_index.popular | 163 |
| abstract_inverted_index.produce | 105 |
| abstract_inverted_index.propose | 65 |
| abstract_inverted_index.refines | 76 |
| abstract_inverted_index.results | 175 |
| abstract_inverted_index.through | 125, 135 |
| abstract_inverted_index.tokens, | 117 |
| abstract_inverted_index.towards | 200 |
| abstract_inverted_index.Building | 138 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.Model}), | 148 |
| abstract_inverted_index.Thinking | 145 |
| abstract_inverted_index.accuracy | 158 |
| abstract_inverted_index.achieves | 153 |
| abstract_inverted_index.advanced | 35 |
| abstract_inverted_index.datasets | 52 |
| abstract_inverted_index.designed | 25 |
| abstract_inverted_index.dynamic, | 178 |
| abstract_inverted_index.existing | 20 |
| abstract_inverted_index.generate | 119 |
| abstract_inverted_index.improved | 106, 134 |
| abstract_inverted_index.inherent | 61 |
| abstract_inverted_index.leverage | 59 |
| abstract_inverted_index.matching | 167 |
| abstract_inverted_index.methods, | 23 |
| abstract_inverted_index.modeling | 85, 165, 206 |
| abstract_inverted_index.offering | 193 |
| abstract_inverted_index.patterns | 37, 189 |
| abstract_inverted_index.provides | 96 |
| abstract_inverted_index.scalable | 198 |
| abstract_inverted_index.Reasoning | 1, 147 |
| abstract_inverted_index.amplifies | 185 |
| abstract_inverted_index.effective | 196 |
| abstract_inverted_index.framework | 73 |
| abstract_inverted_index.generated | 116 |
| abstract_inverted_index.learning. | 137 |
| abstract_inverted_index.modeling. | 18 |
| abstract_inverted_index.preserves | 183 |
| abstract_inverted_index.reasoning | 36, 62, 81, 93, 107, 188 |
| abstract_inverted_index.synthesis | 181 |
| abstract_inverted_index.Adaptation | 68 |
| abstract_inverted_index.abilities, | 63 |
| abstract_inverted_index.adaptation | 22, 124 |
| abstract_inverted_index.automating | 16 |
| abstract_inverted_index.corrective | 98 |
| abstract_inverted_index.hint-based | 179 |
| abstract_inverted_index.identifies | 92 |
| abstract_inverted_index.intervener | 91 |
| abstract_inverted_index.multi-step | 10 |
| abstract_inverted_index.originally | 24 |
| abstract_inverted_index.reasoning, | 11 |
| abstract_inverted_index.supervised | 126 |
| abstract_inverted_index.Lightweight | 70 |
| abstract_inverted_index.benchmarks, | 166 |
| abstract_inverted_index.challenging | 204 |
| abstract_inverted_index.demonstrate | 176 |
| abstract_inverted_index.fine-tuning | 48 |
| abstract_inverted_index.particular, | 43 |
| abstract_inverted_index.performance | 169, 202 |
| abstract_inverted_index.traditional | 50 |
| abstract_inverted_index.4B-parameter | 150 |
| abstract_inverted_index.Optimization | 146 |
| abstract_inverted_index.capabilities | 7 |
| abstract_inverted_index.demonstrated | 5 |
| abstract_inverted_index.expert-level | 201 |
| abstract_inverted_index.fine-tuning. | 127 |
| abstract_inverted_index.high-quality | 120 |
| abstract_inverted_index.incorporates | 103 |
| abstract_inverted_index.optimization | 17, 84, 164, 205 |
| abstract_inverted_index.\textbf{CALM} | 66 |
| abstract_inverted_index.interventions | 110 |
| abstract_inverted_index.opportunities | 14 |
| abstract_inverted_index.progressively | 75 |
| abstract_inverted_index.reinforcement | 136 |
| abstract_inverted_index.trajectories. | 108 |
| abstract_inverted_index.(\textit{Smart | 144 |
| abstract_inverted_index.\textbf{STORM} | 143 |
| abstract_inverted_index.Modification}), | 71 |
| abstract_inverted_index.state-of-the-art | 156 |
| abstract_inverted_index.instruction-tuned | 28 |
| abstract_inverted_index.(\textit{Corrective | 67 |
| abstract_inverted_index.\textit{non-reflective} | 51 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile |